Name: \qquad Exam 3
Math 152, Calculus II - Crawford

- Calculators, books, or notes (in any form) are not allowed. Having a phone out will result in an automatic 0 grade.
- You may use the given formula sheet.
- Clearly indicate your answers.
- Show all your work - partial credit may be given for written work.
- Good Luck!

Score	
1	$/ 10$
2	$/ 12$
3	$/ 30$
4	$/ 12$
5	$/ 24$
6	$/ 10$
7	$/ 100$
Total	

1. (10 pts). Determine whether the following series converges or diverges. If it converges, find the sum.
$\sum_{n=1}^{\infty} \frac{4(-2)^{n-2}}{3^{n+1}}$
2. (12 pts). Given $\sum_{n=1}^{\infty} n e^{-n^{2}}$,
(a). Use the integral test to show that it converges.
[You do not need to show that it decreases.]
(b). If s_{10} is used to approximate the infinite series, what is the bound for the maximum possible error? (i.e. bound on $\left|R_{10}\right|$?) [Leave your answer exact.]
3. (30 pts). Determine whether the following series converge or diverge. [Show all your work and clearly indicate any tests that you use.]
(a). $\sum_{n=1}^{\infty}\left(\frac{n-8 n^{2}}{3 n^{2}+2}\right)^{n}$
(b). $\sum_{n=1}^{\infty} \frac{2+\sin n}{n^{2}+4}$
(c). $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{n 10^{n}}$
4. (12 pts). Determine whether the following series is absolutely convergent, conditionally convergent, or divergent. [Show all your work and clearly indicate any tests that you use.]
$\sum_{n=1}^{\infty} \frac{(-1)^{n} 3 n}{n^{2}+n}$
5. (24 pts). Find the radius of convergence and exact interval of convergence for the following series.
(a). $\sum_{n=1}^{\infty} \frac{n^{2}(x+1)^{n}}{2^{n}}$
(b). $\sum_{n=1}^{\infty} \frac{n!}{n+1} x^{2 n}$
6. (10 pts). Use a known power series to find a power series representation for the function $f(x)=\frac{x}{(1+4 x)^{2}}$. [Simplify your answer, but do not shift any indices.]
7. (6 pts). True or FALSE. Determine whether the following statement is true or false.
(a). T F

$$
\text { If } \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}, \text { then } \sum_{n=2}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}-6}{6}
$$

(b). T $\mathrm{F} \quad$ If $\sum_{n=1}^{\infty} c_{n} x^{n}$ converges for $x=-3$, but diverges for $x=4$, then it must converge for $x=3$.
(c). T $\mathrm{F} \quad$ If $\sum_{n=1}^{\infty} c_{n} x^{n}$ converges for $x=-3$, but diverges for $x=4$, then it must diverge for $x=-5$.

