Name:
Exam 1
Math 152, Calculus II - Crawford

- No calculators, books, or notes (in any form) allowed. You may use the given Unit Circle.
- Clearly indicate your answers.
- Show all your work - partial credit may be given for written work.
- Evaluate trigonometric, exponential, and logarithmic expressions for standard values.
- Good Luck!

Formulas that you may or may not find helpful

$$
\begin{array}{ll}
\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
\sin 2 x=2 \sin x \cos x \\
\int \sec x d x=\ln |\sec x+\tan x|+C & \\
\int \csc x d x=\ln |\csc x-\cot x|+C & \frac{d}{d x}\left[\cos ^{-1} x\right]=\frac{-1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left[\sin ^{-1} x\right]=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left[\cot ^{-1} x\right]=\frac{-1}{1+x^{2}} \\
\frac{d}{d x}\left[\tan ^{-1} x\right]=\frac{1}{1+x^{2}} & \frac{d}{d x}\left[\csc ^{-1} x\right]=\frac{-1}{x \sqrt{x^{2}-1}}
\end{array}
$$

Score

1	$/ 12$
2	$/ 12$
3	$/ 10$
4	$/ 24$
5	$/ 10$
6	$/ 24$
7	$/ 100$
Total	

1. (12 pts). Simplify and find the exact values of the following expressions.
(a). $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$
(b). $\log _{10} 25+\log _{10} 4$
(c). $e^{\ln \left(\ln \left(1 / e^{3}\right)\right)}$
2. (12 pts). Given $f(x)=x+x^{2}+e^{x}$, find $\left(f^{-1}\right)^{\prime}(1)$.
[Note: f is one-to-one. Use the formula for $\left(f^{-1}\right)^{\prime}(a)$.]
3. (10 pts). Strontium-90 decays according to the model $m(t)=m_{0} e^{k t}$ where m is the mass in mg and t is time in days. The half-life of Strontium-90 is 28 days.
[You do not need a calculator. Leave you answers exact and you do not need to simplify.]
(a). Find the proportionality constant k.
(b). If a sample has an initial mass of 40 mg , how long will it take to decay to a mass of 8 mg ?
4. (24 pts). Differentiate the following functions.
[Do not simplify.]
(a). $s(t)=e^{t \cos t}+5^{8 t}$
(b). $y=\sec ^{-1}\left(4 x^{2}\right)$
(c). $y=\cosh (\sqrt{x})$
5. (10 pts). Find the equation of the tangent line to $y=\ln \left(x^{2}\right)$ at $x=1$.
6. (10 pts). Use Logarithmic Differentiation to find y^{\prime} in terms of x only for $y=(\sin x)^{x}$
7. (24 pts). Evaluate the following integrals.
(a). $\int \frac{1}{a t+b} d t \quad$ where a and b are constants.
(b). $\int \frac{e^{-3 x}}{\left(1+e^{-3 x}\right)^{2}} d x$
(c). $\int \frac{\sin (\ln x)}{x} d x$
