The following expansions may be helpful:
$(x+h)^{2}=x^{2}+2 x h+h^{2}$
$(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}$
$(x+h)^{4}=x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}$
$(x+h)^{5}=x^{5}+5 x^{4} h+10 x^{3} h^{2}+10 x^{2} h^{3}+5 x h^{4}+h^{5}$

For each of the following functions, use the limit definition $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to compute the derivative $f^{\prime}(x)$. Show all your work.

1. $f(x)=x^{2}$
2. $f(x)=x^{3}$
3. $f(x)=x^{4}$
4. $f(x)=x^{5}$

Summarize your results here:
$f(x)=x^{2} \Rightarrow f^{\prime}(x)=$ \qquad
$f(x)=x^{3} \Rightarrow f^{\prime}(x)=$ \qquad
$f(x)=x^{4} \Rightarrow f^{\prime}(x)=$ \qquad
$f(x)=x^{5} \Rightarrow f^{\prime}(x)=$ \qquad
5. You should see a pattern. Based on the work above, make an educated guess for the derivative of the following two functions:
(a) $f(x)=x^{56}$
(b) $f(x)=x^{n} \quad$ where n is any positive integer.

