The Final Exam will cover material from the entire semester.
Use the old review sheets, exams, and quizzes to study previous material.

1. Evaluate the following integrals. [Note: You may or may not need to use substitution.] Check your answer by differentiating the result.
(a). $\int_{0}^{2} t^{2} \sqrt{1+t^{3}} d t=\frac{52}{9}$
(b). $\int \sin x \cos (\cos x) d x=-\sin (\cos x)+C$
(c). $\int x\left(3 x^{2}-2 x\right)^{2} d x=\frac{3}{2} x^{6}-\frac{12}{5} x^{5}+x^{4}+C$
(d). $\int \sin x \cos x d x=\frac{1}{2} \sin ^{2} x+C$ OR $-\frac{1}{2} \cos ^{2} x+C$
u-substitution
(e). $\int_{0}^{1}(2-x)^{6} d x=\frac{127}{7}$
2. Sketch the region bounded by the graphs of the following functions. Find the area of the region.
(a). $f(x)=3-2 x-x^{2}, g(x)=-x+1$
$\frac{9}{2}$
(b). $x=y^{2}, x=-y$
3. Set up, but do not evaluate the integral(s) to find volume of the solid generated by rotating the region bounded by the given curves about the given line.
(a). $y=x^{2}, y=4 x-x^{2}$ about the line $y=6$

$$
\begin{array}{r}
V=\int_{0}^{2} \pi\left[\left(6-x^{2}\right)^{2}-\left(6-4 x+x^{2}\right)^{2}\right] d x \\
V=\int_{2}^{6} \pi\left(6-\frac{6}{y}\right)^{2} d y
\end{array}
$$

(b). $x y=6, y=2, y=6, x=6$ about the line $x=6$.
4. The force exerted by gravity on an object sent into space is given by $F(x)=\frac{4.8 \times 10^{11}}{x^{2}}$ pounds where x is measured in miles from the center of the earth. How much work is done to propel a satellite module to 800 miles above the earth. Use 4000 miles for the radius of the earth. [Similar problems not requiring a calculator may be on the test.]
$W=\int_{4000}^{4800} 4.8 \times 10^{11} x^{-2} d x=2 \times 10^{7}$ mile. lbs $=1.056 \times 10^{11}$ foot. lbs
5. If 18 J of work is required to stretch a spring 40 cm from it's natural length, find the work required to stretch it an additional 30 cm .

Convert units to m. $k=225 \Rightarrow W=37.125 \mathrm{~J}$
6. Given $f(x)=\frac{4 x^{2}+4}{x^{2}}$
(a). Find the average value of $f(x)$ on the interval $[-3,-1]$.

$$
f_{\text {ave }}=\frac{16}{3}
$$

(b). Use the Mean Value Theorem for integrals to find all values $x=c$ where $f(c)=f_{\text {ave }}$.

$$
x=-\sqrt{3}
$$

7. Find the value of k so that the average value of $f(x)=k x^{2}-x$ on $[0,2]$ is equal to 4 .

$$
k=\frac{15}{4}
$$

