Part I: Given the attached graph of a function $y=f(x)$.

1. Indicate the point that is the root of the equation. Label it r.
2. Start at the x -value labeled x_{0}, and draw a vertical line to the graph. Mark the point on the $\operatorname{graph}\left(x_{0}, f\left(x_{0}\right)\right)$.
3. Draw the tangent line to the function at the point $\left(x_{0}, f\left(x_{0}\right)\right)$
4. Indicate the point where the tangent line intersects the x-axis. Label this point x_{1}
5. Repeat steps $2-4$, starting with x_{1}, and labeling the new point x_{2}. Continue this several times for x_{3}, x_{4}, etc.
6. What can you say about the points x_{1}, x_{2}, x_{3}, etc and their relationship to the root r .

Newton's Method Graphs

$$
f(x)=x^{3}+x^{2}+x-1
$$

