0. Read the problem and underline key terms.
1. Draw and label a diagram. Introduce notation and clearly state what each variable represents.
2. Write down equations/functions for any quantities mentioned. If a fixed value is given/known, write it down.
3. Clearly state the following sentence, filling in the appropriate equations

Maximize(or Minimize) Function for Quantity to be optimized
subject to Constraint(s).
4. Use the Constraint(s) to write the Quantity Function as a function of one variable only It is often helpful to simplify the function before differentiating.
5. Determine the domain for this function.
6. Use Calculus techniques to find the absolute maximum (or minimum) values.

Ex: Find the dimensions of the largest rectangular area you can enclose if you have 80 ft of fencing.

Ex: Suppose the pen is going to be built next to a barn so that one side does not need fencing. Find the dimensions of the largest rectangular area you can enclose if you have 80 ft of fencing.

Ex: Suppose a pen enclosing $3600 \mathrm{ft}^{2}$ is to be constructed with fencing on all four sides. The fencing for 3 sides of the pen costs $\$ 20$ per linear foot. The fourth side of the pen requires a gates and the cost is $\$ 30$ per linear foot on that side. Find the dimensions that will minimize the cost.

