Information from the function $y=f(x)$:

1. Domain:

Find the domain of the function by determining all values of x for which the function $f(x)$ is defined.

2. Intercepts:

(a). x-intercept(s): Set $y=0$ and solve for x. [May have more than one]
(b). y-intercept: Set $x=0$ and find the y-value, i.e. $f(0)$. [Only one]

3. Asymptotes:

(a). Vertical asymptotes: If the $\lim _{x \rightarrow a} f(x)=\frac{\text { nonzero number }}{0}=+\infty$ or $-\infty$, then a line of the form $x=a$ is a vertical asymptote. [Note: The function is undefined at $x=a$.]
(b). Horizontal asymptotes: If the $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$, then a line of the form $y=L$ is a horizontal asymptote.
(c). Slant asymptotes: Slant asymptotes are lines of the form $y=m x+b$ that occur in rational functions $f(x)=\frac{p(x)}{q(x)}$ where the degree of the numerator is one higher than the degree of the denominator. Note in this case, the function will be growing or decreasing without bound (i.e. $\lim _{x \rightarrow \pm \infty} f(x)=+\infty$ or $-\infty$).
(i) Use long division to rewrite the function as $f(x)=m x+b+\frac{\text { remainder }}{\text { denominator }}$.
(ii) Verify that $\lim _{x \rightarrow \pm \infty} \frac{\text { remainder }}{\text { denominator }}=0$.
(iii) Hence, as $x \rightarrow \pm \infty$, the function looks like the line $y=m x+b$ which is the slant asymptote.

Information from the first derivative $f^{\prime}(x)$:

4. Intervals of Increase or Decrease:

To find intervals where the function is increasing or decreasing,
(i). Find the critical numbers (i.e. x-values where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined).
(ii). Draw a number line and separate it into intervals using the critical numbers and asymptotes.
(iii). Choose a number from each interval and find the value of f^{\prime} at that number.
(iv). If f^{\prime} is negative, then f is decreasing on that interval.

If f^{\prime} is positive, then f is increasing on that interval.

5. Local Maximum and Minimum Values:

(a). A local maximum occurs at any number x in the domain where f is increasing on the left of that number and decreasing on the right of that number.
(b). A local minimum occurs at any number x in the domain where f is decreasing on the left of that number and increasing on the right of that number.
(c). Plug these x-numbers into the original $f(x)$, to find the local minimum and maximum values of f.

Information from the second derivative $f^{\prime \prime}(x)$:

6. Intervals of Concave Up or Concave Down:

To find intervals where the function is concave up or concave down,
(i). Find the interesting numbers (i.e. x-values where $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ is undefined).
(ii). Draw a number line and separate it into intervals using these interesting numbers and asymptotes.
(iii). Choose a number from each interval and find the value of $f^{\prime \prime}$ at that number.
(iv). If $f^{\prime \prime}$ is negative, then f is concave down on that interval.

If $f^{\prime \prime}$ is positive, then f is concave up on that interval.

7. Inflection Points:

(a). A inflection point occurs at any number x in the domain where f is concave up on the left of that number and concave down on the right side of that number or vice versa.
(b). Plug these x-numbers into the original $f(x)$, to find the actual inflection point of f.

Finally:

8. Sketch the Curve:

Use all the information obtained above to sketch the curve:
(i). Draw asymptotes from part (3) with dashed lines.
(ii). Plot the intercepts, maximum and minimum values, and inflection points found in (2), (5), \& (7).
(iii). Sketch a curve that passes through these points that increases and decreases as found in part (4), with concavitiy as found in part (6), and approaches the asymptotes from part (3).

