1. Given the following function and its derivatives

$$
f(x)=\frac{2\left(x^{2}-9\right)}{x^{2}-4} \quad f^{\prime}(x)=\frac{20 x}{\left(x^{2}-4\right)^{2}} \quad f^{\prime \prime}(x)=\frac{-20\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}}
$$

Fill in the following information about the function and its graph. Show all work and write "none", if applicable.
domain:
x-intercept(s): \qquad
y-intercept: \qquad
vertical
asymptote(s): \qquad
horizontal
asymptote(s): \qquad
slant asymptote: \qquad
critical numbers: \qquad
intervals where
increasing:
intervals where
decreasing: \qquad
coordinates of
local max(s): \qquad
coordinates of
local min(s): \qquad
intervals where
concave up: \qquad
intervals where
concave down:

Inflection Point(s):

Sketch the graph of the function on the set of axes provided separately.
2. Given the following function and its derivatives

$$
f(x)=x \sqrt{x^{2}-4} \quad f^{\prime}(x)=\frac{2\left(x^{2}-2\right)}{\sqrt{x^{2}-4}} \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{2}-6\right)}{\left(x^{2}-4\right)^{3 / 2}}
$$

Fill in the following information about the function and its graph. Show all work and write "none", if applicable.
domain:
x-intercept(s): \qquad
y-intercept: \qquad
vertical
asymptote(s): \qquad
horizontal
asymptote(s):
slant asymptote: \qquad
critical numbers: \qquad
intervals where
increasing: \qquad
intervals where
decreasing: \qquad
coordinates of
local max(s): \qquad
coordinates of
local $\min (\mathrm{s})$: \qquad
intervals where
concave up:
intervals where
concave down:

Inflection Point(s):

Sketch the graph of the function on the set of axes provided separately.

Sketch the graph of the function $f(x)=\frac{2\left(x^{2}-9\right)}{x^{2}-4}$ from Example 1. Label any maximum and minimum values and inflection points.

Sketch the graph of the function $f(x)=f(x)=x \sqrt{x^{2}-4}$ from Example 2. Label any maximum and minimum values and inflection points.

