Practice differentiating the following with respect to \mathbf{t} .

1.

(a).	If x does not depend on t (i.e. x is constant), then	$\frac{d}{dt}\left[x\right] =$

(b). If x depends on t, then
$$\frac{d}{dt}[x] =$$

2.

- (a). If y does not depend on t (i.e. y is constant), then $\frac{d}{dt} [y^2] =$
- (b). If y depends on t, then $\frac{d}{dt} [y^2] =$

3.

(a). If x does not depend on t (i.e. x is constant) and y depends on t, then

(b). If x depends on t and y does not depend on t (i.e. y is constant), then

(c). If x depends on t and y depends on t, then

4.

- (a). If x does not depend on t (i.e. x is constant) and y depends on t, then
- (b). If x depends on t and y does not depend on t (i.e. y is constant), then
- (c). If x depends on t and y depends on t, then $\frac{d}{dt}[xy] =$

$$\frac{d}{dt}\left[x^2 + y^2\right] =$$

_1

 $\frac{d}{dt}\left[x^2 + y^2\right] =$

$$\frac{d}{dt}\left[x^2 + y^2\right] =$$

$$\frac{d}{dt}\left[xy\right] =$$

 $\frac{d}{dt}[xy] =$

5.

- (a). If x does not depend on t (i.e. x is constant), then
- $\frac{d}{dt}\left[\sin x\right] =$ (b). If x depends on t, then

6.

- (a). If x does not depend on t (i.e. x is constant) and y depends on t, the $dt \lfloor y \rfloor$
- (b). If x depends on t and y does not depend on t (i.e. y is constant), then \overline{a}
- $\frac{d}{dt}\left[\frac{x}{y}\right] =$ (c). If x depends on t and y depends on t, then

7.

 $\frac{d}{dt} \left[\frac{1}{3} \pi r^2 h \right] =$ (a). If r does not depend on t (i.e. r is constant) and h depends on t, then

- $\frac{d}{dt} \left[\frac{1}{3} \pi r^2 h \right] =$ (b). If r depends on t and h does not depend on t (i.e. h is constant), then
- (c). If r depends on t and h depends on t, then

$$\frac{d}{dt} \left[\frac{1}{3} \pi r^2 h \right] =$$

$$\frac{d}{dt}\left[\sin x\right] =$$

en
$$\frac{d}{dt} \left[\frac{x}{y} \right] =$$

$$\frac{d}{dt} \left[\frac{x}{y} \right] =$$