Practice differentiating the following with respect to \mathbf{t}.
1.
(a). If x does not depend on t (i.e. x is constant), then
(b). If x depends on t, then

$$
\frac{d}{d t}[x]=
$$

$$
\frac{d}{d t}[x]=
$$

2.

(a). If y does not depend on t (i.e. y is constant), then
(b). If y depends on t, then

$$
\frac{d}{d t}\left[y^{2}\right]=
$$

$$
\frac{d}{d t}\left[y^{2}\right]=
$$

3.

(a). If x does not depend on t (i.e. x is constant) and y depends on t, then
(b). If x depends on t and y does not depend on t (i.e. y is constant), then
(c). If x depends on t and y depends on t, then

$$
\frac{d}{d t}\left[x^{2}+y^{2}\right]=
$$

4.

(a). If x does not depend on t (i.e. x is constant) and y depends on t, then $\quad \frac{d}{d t}[x y]=$
(b). If x depends on t and y does not depend on t (i.e. y is constant), then $\quad \frac{d}{d t}[x y]=$
(c). If x depends on t and y depends on t, then

$$
\frac{d}{d t}[x y]=
$$

5.

(a). If x does not depend on t (i.e. x is constant), then $\quad \frac{d}{d t}[\sin x]=$
(b). If x depends on t, then

$$
\frac{d}{d t}[\sin x]=
$$

6.

(a). If x does not depend on t (i.e. x is constant) and y depends on t, then $\quad \frac{d}{d t}\left[\frac{x}{y}\right]=$
(b). If x depends on t and y does not depend on t (i.e. y is constant), then $\quad \frac{d}{d t}\left[\frac{x}{y}\right]=$
(c). If x depends on t and y depends on t, then

$$
\frac{d}{d t}\left[\frac{x}{y}\right]=
$$

7.

(a). If r does not depend on t (i.e. r is constant) and h depends on t, then $\quad \frac{d}{d t}\left[\frac{1}{3} \pi r^{2} h\right]=$
(b). If r depends on t and h does not depend on t (i.e. h is constant), then $\quad \frac{d}{d t}\left[\frac{1}{3} \pi r^{2} h\right]=$
(c). If r depends on t and h depends on t, then

$$
\frac{d}{d t}\left[\frac{1}{3} \pi r^{2} h\right]=
$$

