1. Differentiate:

For part (c), assume that y is a function of x [ie. y = y(x)].

(a).
$$F(x) = (f(x))^3$$
 (b). $F(x) = (y(x))^3$ (c). $F(x) = y^3$

(d). Is there any difference between parts (a)-(c)?

2. Differentiate:

For part (c), assume that y is a function of x [ie. y = y(x)].

(a). $F(x) = x^2 + (f(x))^2$ (b). $F(x) = x^2 + (y(x))^2$ (c). $F(x) = x^2 + y^2$

(d). Is there any difference between parts (a)-(c)?

3. Differentiate:

For part (c), assume that y is a function of x [ie. y = y(x)].

(a). $F(x) = f(x) \cdot \sin x$ (b). $F(x) = y(x) \cdot \sin x$ (c). $F(x) = y \cdot \sin x$

(d). Is there any difference between parts (a)-(c)?

4. Differentiate:

For part (c), assume that y is a function of x [ie. y = y(x)].

(a). $F(x) = \sqrt{f(x)}$ (b). $F(x) = \sqrt{y(x)}$ (c). $F(x) = \sqrt{y}$

(d). Is there any difference between parts (a)-(c)?

sume that g is a function of x [ie. g = g(x)].

5. Assume that you know <u>y</u> is a function of x, [i.e. y = y(x)] but you are not given the function y. Find the following derivatives, using the chain rule as necessary. Your answers may contain y or $\frac{dy}{dx}$.

(a).
$$\frac{d}{dx}[x]$$
 (b). $\frac{d}{dx}[y]$ [Don't over think this one.]

(c).
$$\frac{d}{dx} \left[x^{1/2} \right]$$
 (d). $\frac{d}{dx} \left[y^{1/2} \right]$

(e).
$$\frac{d}{dx} [x^3]$$
 (f). $\frac{d}{dx} [y^3]$

(g).
$$\frac{d}{dx}[x^n]$$
 (h). $\frac{d}{dx}[y^n]$

(i).
$$\frac{d}{dx} [\sin x]$$
 (j). $\frac{d}{dx} [\sin y]$

(**k**).
$$\frac{d}{dx}[x+y]$$
 (**l**). $\frac{d}{dx}[x^2+y^2]$

For the following, use the Product or Quotient Rule and previous results

(m).
$$\frac{d}{dx}[xy]$$
 (n). $\frac{d}{dx}[x^2y^3]$

(o).
$$\frac{d}{dx} \left[\frac{x}{y} \right]$$
 (p). $\frac{d}{dx} \left[\frac{y^2}{x^2} \right]$

(q).
$$\frac{d}{dx} [y \sin x]$$
 (r). $\frac{d}{dx} [x \sin y]$