1. Differentiate:

For part (c), assume that y is a function of x [ie. $y=y(x)]$.
(a). $F(x)=(f(x))^{3}$
(b). $\quad F(x)=(y(x))^{3}$
(c). $\quad F(x)=y^{3}$
(d). Is there any difference between parts (a)-(c)?
2. Differentiate:

For part (c), assume that y is a function of $x[$ ie. $y=y(x)]$.
(a). $F(x)=x^{2}+(f(x))^{2}$
(b). $\quad F(x)=x^{2}+(y(x))^{2}$
(c). $\quad F(x)=x^{2}+y^{2}$
(d). Is there any difference between parts (a)-(c)?
3. Differentiate:

For part (c), assume that y is a function of x [ie. $y=y(x)]$.
(a). $F(x)=f(x) \cdot \sin x$
(b). $\quad F(x)=y(x) \cdot \sin x$
(c). $\quad F(x)=y \cdot \sin x$
(d). Is there any difference between parts (a)-(c)?
4. Differentiate:

For part (c), assume that y is a function of x [ie. $y=y(x)]$.
(a). $F(x)=\sqrt{f(x)}$
(b). $\quad F(x)=\sqrt{y(x)}$
(c). $\quad F(x)=\sqrt{y}$
(d). Is there any difference between parts (a)-(c)?
5. Assume that you know y is a function of x, [i.e. $y=y(x)$] but you are not given the function y. Find the following derivatives, using the chain rule as necessary. Your answers may contain y or $\frac{d y}{d x}$.
(a). $\frac{d}{d x}[x]$
(b). $\frac{d}{d x}[y]$
[Don't over think this one.]
(c). $\frac{d}{d x}\left[x^{1 / 2}\right]$
(d). $\frac{d}{d x}\left[y^{1 / 2}\right]$
(e). $\frac{d}{d x}\left[x^{3}\right]$
(f). $\frac{d}{d x}\left[y^{3}\right]$
(g). $\frac{d}{d x}\left[x^{n}\right]$
(h). $\frac{d}{d x}\left[y^{n}\right]$
(i). $\frac{d}{d x}[\sin x]$
(j). $\frac{d}{d x}[\sin y]$
(k). $\frac{d}{d x}[x+y]$
(l). $\frac{d}{d x}\left[x^{2}+y^{2}\right]$

For the following, use the Product or Quotient Rule and previous results
(m). $\frac{d}{d x}[x y]$
(n). $\frac{d}{d x}\left[x^{2} y^{3}\right]$
(o). $\frac{d}{d x}\left[\frac{x}{y}\right]$
(p). $\frac{d}{d x}\left[\frac{y^{2}}{x^{2}}\right]$
(q). $\frac{d}{d x}[y \sin x]$
(r). $\frac{d}{d x}[x \sin y]$

