Recall,
$f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad$ gives the derivative of f at the point $x=a$.

For the function
$f(x)=\frac{1}{3} x^{3}-4 x$
Graph of $f(x)=\frac{1}{3} x^{3}-4 x$

the derivative at $x=a$ is
$f^{\prime}(a)=a^{2}-4 \quad$ Details on back.

1. Complete the following table to find the derivative (slope of tangent line) at different values of $x=a$.

$x=a$	$f^{\prime}(a)=a^{2}-4$
-3	5
-2	
-1	
0	
1	
2	
3	

2. Plot the coordinate pairs $\left(a, f^{\prime}(a)\right)$ from the table on the set of axes above.
3. Does it seem like you could connect these points to make a "nice" graph? If so, do it.
$f(x)=\frac{1}{3} x^{3}-4 x$
Then the derivative at a point $x=a$ found by:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{3}(a+h)^{3}-4(a+h)-\left(\frac{1}{3} a^{3}-4 a\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{3}\left(a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)-4 a-4 h-\frac{1}{3} a^{3}+4 a}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{3} a^{3}+a^{2} h+a h^{2}+\frac{1}{3} h^{3}-4 a-4 h-\frac{1}{3} a^{3}+4 a}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{3} e^{3}+a^{2} h+a h^{2}+\frac{1}{3} h^{3}-4 a-4 h-\frac{1}{3} e^{3}+4 a}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{2} h+a h^{2}+\frac{1}{3} h^{3}-4 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(a^{2}+a h+\frac{1}{3} h^{2}-4\right)}{h}=\lim _{h \rightarrow 0} \frac{h\left(a^{2}+a h+\frac{1}{3} h^{2}-4\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(a^{2}+a h+\frac{1}{3} h^{2}-4\right) \\
& =a^{2}-4
\end{aligned}
$$

i.e
$f^{\prime}(a)=a^{2}-4$

