Recall the Tangent Line Problem: Given a curve $y=f(x)$ and a point $P(a, f(a))$ on the curve, find the equation for the tangent line to the curve $y=f(x)$ at the point P.
[Sketch]

In order to write the equation of a line, we need
(1). Point: $\sqrt{ } \quad P(a, f(a))$ is given
(2). Slope: Not given. Also not given 2 points on the tangent line (we only have 1 point), so we can't compute the slope.
\Rightarrow Approximate the slope of the tangent line by finding the slope of the secant line through P and another arbitrary point Q on the curve.

If x is the x-coordinate of point Q, then the y-coordinate is \qquad $f(x) \quad$. ie. $Q(x, f(x))$

So the slope of the secant line through $P(a, f(a))$ and $Q(x, f(x))$ is given by

$$
m_{P Q}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(x)-f(a)}{x-a}
$$

The approximated slope $m_{P Q}$ will get closer to the slope m of the tangent line as:

$$
\begin{aligned}
& Q \text { gets closer to } P \\
& \Rightarrow x \text { gets closer to } a \text { (i.e. } Q \rightarrow P \text {) } \\
&\text { (i.e. } x \rightarrow a)
\end{aligned}
$$

i.e. $\quad \frac{f(x)-f(a)}{x-a}=m_{P Q} \rightarrow m$ as $x \rightarrow a \quad$ This is a Limit!
(In fact, this limit is how we define the tangent line)
Def. The tangent line to the curve $y=f(x)$ at the point $P(a, f(a))$ is the line through P with the slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Ex Given $f(x)=x^{2}$ at $x=2$
(a). Approximate the slope of the tangent line at $x=2$ by making a table of values for the slope of the secant line $m_{P Q}$ near $x=2$.
$P:$ At $x=2, y=f(2)=2^{2}=4 \quad \Rightarrow \quad P(2,4)$
Q : Any point on $y=x^{2} \quad \Rightarrow \quad Q\left(x, x^{2}\right)$
So $m_{P Q}=\frac{f(x)-f(2)}{x-2}=\frac{x^{2}-4}{x-2}$

x	1.5	1.75	1.9	1.99	2	2.01	2.1	2.5	2.75
$m_{P Q}=\frac{x^{2}-4}{x-2}$	3.50	3.75	3.90	3.99	$? ?$	4.01	4.1	4.25	4.5

From the table of values, guess the slope of the tangent line to be $m=$ \qquad .
i.e. $\lim _{x \rightarrow 2} m_{P Q}=m=$ \qquad
(b). Verify your guess in part (a) by calculating the limit analytically.

$$
m=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2} x+2=4
$$

(c). Find the equation of the tangent line to $f(x)=x^{2}$ at $x=2$

$$
y-4=4(x-2)
$$

(d). Sketch the tangent line from part (c) on the graph of $f(x)=x^{2}$ below. Does this line appear to be the tangent line (just barely touching) at P ?

