Basic Limits

1. $\lim _{x \rightarrow a} c=$
2. $\lim _{x \rightarrow a} x=$
$\underline{\text { Limit Laws }}$ Suppose $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist and c is a constant, then
3. $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
4. $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
5. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
6. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, if $\lim _{x \rightarrow a} g(x) \neq 0$
7. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ for positive integer n

Even More Special Limits and Laws

8. $\lim _{x \rightarrow a} x^{n}=a^{n}$ for positive integer n
9. $\lim _{x \rightarrow a} x^{1 / n}=\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$ for positive integer n and if n is even, $a \geq 0$
10. $\lim _{x \rightarrow a}[f(x)]^{1 / n}=\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ for positive integer n. [In the case that n is even, $f(x) \geq 0$]

Ex: Evaluate the following limit, justifying each step with limit laws.
$\lim _{x \rightarrow 2} \frac{3 x^{2}+2 x+2}{\sqrt{2 x-1}}=\frac{\lim _{x \rightarrow 2}\left(3 x^{2}+2 x+2\right)}{\lim _{x \rightarrow 2} \sqrt{2 x-1}}=\frac{\lim _{x \rightarrow 2}\left(3 x^{2}+2 x+2\right)}{\sqrt{\lim _{x \rightarrow 2}(2 x-1)}} \quad \quad$ by Law

$$
=\frac{\lim _{x \rightarrow 2} 3 x^{2}+\lim _{x \rightarrow 2} 2 x+\lim _{x \rightarrow 2} 2}{\sqrt{\lim _{x \rightarrow 2} 2 x-\lim _{x \rightarrow 2} 1}}
$$

$$
=\frac{3 \lim _{x \rightarrow 2} x^{2}+2 \lim _{x \rightarrow 2} x+\lim _{x \rightarrow 2} 2}{\sqrt{2 \lim _{x \rightarrow 2} x-\lim _{x \rightarrow 2} 1}}
$$

by Law

To find $\lim _{x \rightarrow a} f(x)$, we can use
when the function is "nice" at $x=a$.

Strategy for Finding Limits [i.e. Evaluating $\lim _{x \rightarrow a} f(x)$ analytically]

1. If you get
2. If you get
3. If you get

Ex $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$
Note: $f(x)=\frac{x^{2}-16}{x-4}$
(a). What is the domain of $f(x)$?
(b). Use your calculator to graph the function and sketch it below.

(c). From your graph, determine $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$
(d). Observe:
$f(x)=\frac{x^{2}-16}{x-4}$

