Name:
Take-Home Quiz 4
Math 151 Calculus I - Crawford Due: Thursday, December 5 (in-class)

Books, notes, and calculators are allowed. But you must show all of your work for full credit. You are allowed to work with each other and to get help from the tutors, but you cannot get help from me. You must show all your work. You may turn this quiz in by $3: 00 \mathrm{pm}$ on Thursday, December 5, 2019 without penalty. It will not be accepted after that.

1. (4 pts) Evaluate the following integral: $\quad \int_{0}^{2} t^{2} \sqrt{1+t^{3}} d t$
[Simplify your answer.]
2. (3 pts) Given the graphs of $y=3 x^{2}$ and $y=8 x-x^{2}$ below,
(a). Label each curve with the correct function and shade the area between the two curves.
(b). Set up, but do not evaluate, the integral(s) to find the AREA between the two curves. [Include bounds.

You must show the work for finding the bounds.]

3. (4 pts) The graph of the top half of $x=1+y^{2}$ is given below.
(a). Shade the region bounded by $x=1+y^{2}, x=0, y=0$, and $y=2$.
(b). Set up, but do not evaluate, the integral(s) to find the VOLUME of the solid generated by rotating the shaded region about the y-axis. [Include bounds.]

4. (4 pts) The graphs of $y=3 x^{4}$ (thin curve) and $y=9 x^{2}-x^{4}$ (thick curve) are given below. Set up, but do not evaluate, the integral(s) to find the VOLUME of the solid generated by rotating the shaded region about the line $y=25$. [Include bounds. You must show work for finding the bounds.]

