1. Evaluate the following limits. [Show all work - no shortcuts].
(a). $\lim _{x \rightarrow \infty} \frac{3-x^{2}+4 x^{3}}{x^{4}+2 x}$
(b). $\lim _{x \rightarrow-\infty} \frac{2 x^{2}+3 x+1}{3 x^{2}-3 x-4}$
2. Find the horizontal asymptote(s) of the following function. [You may use shortcuts.] $\quad f(x)=\frac{2 x+1}{\sqrt{4 x^{2}-x}}$.
3. Given the following function and its derivatives

$$
f(x)=\frac{x}{9-x^{2}} \quad f^{\prime}(x)=\frac{x^{2}+9}{\left(9-x^{2}\right)^{2}} \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{2}+27\right)}{\left(9-x^{2}\right)^{3}}
$$

Use the Summary of Curve Sketching to determine the relevant information. Sketch the graph of the function. Label any maximum and minimum points and inflection points.

domain:	slant asymptote:	coordinates of local max/min(s):
x-intercept(s):	critical numbers:	intervals where concave up:
y-intercept:	intervals where increasing:	intervals where concave down:
vertical asymptote(s):		inflection point(s):

4. If a box with a square base and open top is to hold $4 \mathrm{ft}^{3}$, find the dimensions of the box that will require the least amount of material.
5. Find the maximum possible volume of a right circular cylinder if its total surface area (including top and bottom) is 150π.
6. A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window. Find the dimensions of the Norman window with the largest possible area if the total perimeter is 16 ft .
7. Given $f(x)=4 x^{3}-12 x^{2}+12 x-3, \quad$ [The graph is given below.]
(a). Explicitly write out Newton's formula for finding the root of this function.
(b). Start with an initial guess of $x_{0}=0.5$ and iterate Newton's Method once. [Do not simplify your answer!]
(c). Starting with $x_{0}=0.5$, demonstrate Newton's method by marking $x_{0}, x_{1}, x_{2}, \ldots$ and the associated tangent lines on the graph of $f(x)$. Does it seem like Newton's method will work if you start with this initial guess?
(d). Starting with $x_{0}=1.0$, demonstrate Newton's method by marking $x_{0}, x_{1}, x_{2}, \ldots$ and the associated tangent lines on the graph of $f(x)$. Does it seem like Newton's method will work if you start with this initial guess? Why or why not?

8. Find the antiderivatives for the following functions.
(a). $h(x)=3 x^{3}-7 x^{2}$
(b). $\quad f(x)=\sqrt{x}-\sqrt{3} x^{2}$
9. Given that $g^{\prime}(\theta)=-\sec ^{2} \theta$ and $g\left(\frac{\pi}{3}\right)=0$, find $g(\theta)$.
10. Given the function $f(x)=\frac{3}{x}$, estimate the area under the curve $f(x)$ on the interval $[1,6]$ using 5 subintervals and using the right endpoint of each subinterval. [i.e. find R_{5}].
11. Using the definition of the definite integral $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} R_{n}$, set-up, but do not evaluate, the summation/limit using right endpoints for the integral $\int_{0}^{1} x^{3}+1 d x$.
12. Section 4.3: \#3
13. Evaluate the following integrals [Use integration techniques, $\underline{\text { not }}$ the limit definition.]:
(a). $\int_{1}^{2} t+2 d t$
(b). $\int_{1}^{x^{2}} t+2 d t$
(c). $\int_{0}^{4} \frac{x(2+x)}{\sqrt{x}} d x$
14. Use the Fundamental Theorem of Calculus (Part B/1) to find $F^{\prime}(x)$
(a). $F(x)=\int_{0}^{x} t \cos t d t$
(b). $\quad F(x)=\int_{-2}^{x^{2}} \sqrt{t+8} d t$
15. A particle moves with a velocity of $v(t)=-t^{2}+4 t$ on the interval $0 \leq t \leq 6$.
(a). Find the displacement
(b). Find the total distance traveled
16. Let $r(t)$ be the rate at which the world's oil is consumed, where t is measured in years starting at $t=0$ on January 1 , 2000 and $r(t)$ is measured in barrels per year. What does $\int_{0}^{8} r(t) d t$ represent and what are its units?
17. Evaluate the following integrals. [Note: You may or may not need to use substitution.] Check your answer by differentiating the result.
(a). $\int 3 x^{5}-4 x^{3}+6 x+2 d x$
(f). $\int \sin x \cos x d x$
(b). $\int(3 x-1)\left(3 x^{2}-2 x\right)^{2} d x$
(g). $\int \frac{5 x}{\sqrt[3]{1-x^{2}}} d x$
(c). $\int x\left(3 x^{2}-2 x\right)^{2} d x$
(h). $\int_{1}^{3} \frac{x^{2}+1}{x^{2}} d x$
(d). $\int\left(1+\frac{1}{t}\right)\left(\frac{1}{t^{2}}\right) d t$
(i). $\int(2-x)^{6} d x$
(e). $\int_{0}^{\pi / 6} \sec x \tan x d x$
(j). $\int \theta \sin \left(3 \theta^{2}\right) d \theta$
