Name: ______ Math 151, Calculus I – Crawford

Total

/100

	Score	
	1	/8
	2	/14
	3	/12
• Calculators, books, notes (in any form), cell phones, and any unauthorized sources are <u><i>not</i></u> allowed.	4	/8
• You may use the given Unit Circle.	5	/8
 Clearly indicate your answers. Show all your work – partial credit may be given for written work. 	6	/10
• Good luck!	7	/28
	8	/12
	9	/28 /12 /2

1. (8 pts). Find the horizontal asymptote(s), if any, of the following function. [Justify your answer.]

 $f(x) = \frac{1 - 2x + 4x^2}{3x^2 - 1}$

2. (14 pts). Suppose there are 27 ft² of material available to make a box with square base and an open top. Find the dimensions of such a box that will have the largest possible volume.

[Remember that significant partial credit will be given for clearly and accurately labeling a picture and setting up the problem.]

3. (12 pts). Given that f''(x) = 2 - 3x and f'(0) = 2, f(1) = 0, find f(x).

4. (8 pts). Determine a definite integral $\int_a^b f(x) dx$ that is equivalent to the given limit.

[Recall
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$
]

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\left(1 + \frac{3}{n}i \right)^2 - \left(1 + \frac{3}{n}i \right) \right] \frac{3}{n}$$

5. (8 pts). Use the Fundamental Theorem of Calculus Part B/1 to find F'(x) for

$$F(x) = \int_{-2}^{\sqrt{x}} \sin t \, dt$$

6. (10 pts). Let $g(x) = \int_0^x f(t) dt$ where <u>f is the function graphed below</u>.

y					
1		A	f		
0	1	2		1	t
1	/		-		_

(a). Find g(0) and g(4).

(b). On what interval(s) is g increasing?

7. (28 pts). Evaluate the following integrals. [Use integration techniques, <u>NOT</u> the limit definition.]

(a).
$$\int x^2 \sqrt{x} - 5x + 6 \, dx$$

(b).
$$\int_{\pi/6}^{\pi/3} \sin x$$

(c).
$$\int \frac{x^2 + 1}{(x^3 + 3x)^4} dx$$

8. (12 pts). The velocity of a particle is given below. Find the <u>total distance traveled</u> over $0 \le t \le 2$.

 $v(t) = t^2 - 1$

9. (2 pts). TRUE or FALSE: If Newton's method is used to find the root of the equation $x - \cos(3x) = 0$, the equation for Newton's Method is given by

 $x_{n+1} = x_n - \frac{x_n - \cos(3x_n)}{1 + \sin(3x_n) \cdot 3}$