1. Differentiate the following using Differentiation Rules.
(a). $s(t)=\sqrt[3]{\left(t^{3}+3 t^{2}+4\right)^{2}}$
(b). $s(t)=\left(3 t^{3}-t^{2}+7\right)^{23}$
(c). $f(\theta)=\theta \sin \left(\theta^{2}+1\right)$
(d). $y=\frac{x\left(2 x^{4}+4\right)^{8}}{\tan 2 x}$ [Do not simplify!]
2. Find the equation of the tangent line to the curve $y=\sqrt[3]{2 x^{2}-5}$ at $x=4$.
3. Given $f(x)=g\left(3 x^{2}\right)$, find f^{\prime} in terms of g^{\prime}.
4. Given the curve drawn below and defined by $\quad x^{2}+y^{2}=3+x y$
(a). Find $\frac{d y}{d x}$
(b). On the graph below, sketch any tangents lines to the curve where the slope is 0 .
(c). Use part (a) to find these points on the curve where the slope is 0 . Must show work for credit.
(d). Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y.

5. A tank holds 1000 gallons of water, which drains from the bottom of the tank in 50 minutes. Torricelli's Law gives the volume V of water remaining in the tank after t minutes as $V=1000\left(1-\frac{1}{50} t\right)^{2}$ for $0 \leq t \leq 50$. Find the rate at which the water is draining from the tank after 10 minutes. Include units in your answer.
6. The cost function for a certain commodity is $C(x)=60+0.12 x-0.0004 x^{2}+.000002 x^{3}$.
(a). Find the marginal cost function.
(b). Find and interpret $C^{\prime}(50)$.
(c). Compare $C^{\prime}(50)$ with the cost of producing the 51st item.
7. If a stone is thrown vertically upward on the moon with a velocity of $8 \mathrm{~m} / \mathrm{s}$, its height after t seconds is given by $y=8 t-0.83 t^{2}$,
(a). What is the velocity after 2 s ?
(b). What is the velocity at impact?
8. Any Section 2.7 applications.
9. Given $f(x)=\sqrt{x}=x^{1 / 2}$
(a). Find the linearization $L(x)$ at $a=25$
(b). Use this linearization $L(x)$ to approximate $\sqrt{24.7} \quad$ [Simplify your answer.]
10. A ladder 8 feet long is leaning against the wall of a house. On the ground, the base of the ladder is being pulled away from the wall at a rate of $\frac{3}{2} \mathrm{ft} / \mathrm{sec}$. How fast is the angle between the top of the ladder and the wall changing when the this angle is $\frac{\pi}{3}$.
11. A particle moves along the curve $x y^{2}=12$. As it reaches the point $(3,2)$, the y-coordinate is decreasing at a rate of 2 cm / s. How fast is the x-coordinate of the particle position changing changing at that instant?
12. Find the critical numbers for $g(t)=4 t^{3}-3 t^{2}+1$
13. Given $f(x)=2 \sqrt{x}-x$, find the absolute maximum and minimum values of $f(x)$ on the interval $[0,9]$.
14. Given $\quad f(x)=\frac{(x-1)^{3}}{x^{2}} \quad f^{\prime}(x)=\frac{(x-1)^{2}(x+2)}{x^{3}}$

$$
f^{\prime \prime}(x)=\frac{6(x-1)}{x^{4}}
$$

(a). Find the intervals of increase or decrease.
(b). Find the local maximum and minimum values.
(c). Find the intervals of concavity and the inflection points.
15. Given $f(\theta)=\cos ^{2}(\theta)$, on $0 \leq \theta \leq 2 \pi$,
(a). Find the intervals of increase or decrease.
(b). Find the local maximum and minimum values.
(c). Find the intervals of concavity and the inflection points.
16. Section $3.3 \# 27$
*Similar non-calculator problems could be given.

