Score	
1	$/ 12$
2	$/ 16$
3	$/ 12$
4	$/ 14$
5	$/ 14$
6	$/ 12$
7	$/ 100$
8	
Total	

1. (12 pts). Find an equation of the tangent line to $f(x)=x\left(x^{2}+1\right)^{3}$ at $x=1$.
2. (16 pts). Differentiate the following [Do not simplify!]
(a). $g(\theta)=\sin ^{4}(2 \theta)$
(b). $y=\sqrt{\frac{5 x-1}{x^{2}+4}}$
3. (12 pts). Use implicit differentiation to find y^{\prime} for the given curve.
$x^{2}+\tan y=y+x y^{3}$
4. $(14 \mathrm{pts})$. Given $f(x)=\sqrt{x}$
(a). Find the linearization $L(x)$ at $x=64$.
(b). Use the linearization from part (a) to approximate $\sqrt{64.2}$. i.e. Use $L(x)$ to approximate $f(64.2)$.
[You do not need to simplify the approximation in part (b).... Seriously, don't simplify it.]
5. (8 pts). Newtons Law of Gravitation says that the magnitude F of the force exerted by a body of mass m on a body of mass M is
$F=\frac{G m M}{r^{2}}$ where G is the gravitational constant and r is the distance between the bodies.
(a). Find and simplify $\frac{d F}{d r}$.
(b). Explain (briefly) the meaning of $\frac{d F}{d r}$.
6. (14 pts). A plane flying horizontally at an altitude of 5 mi and a speed of $480 \mathrm{mi} / \mathrm{h}$ passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when the distance from the plane to the station is 6 mi .
[Remember that significant partial credit will be given for clearly and accurately labeling the picture, and indicating values and equations in correct mathematical notation.]
7. (12 pts). Given $f(x)=\left(x^{2}-1\right)^{3}$ find the absolute maximum and absolute minimum values of f on the closed interval $[-1,2]$.
8. (14 pts). Given $f(x)=2 x^{4}-3 x^{2}+4$,
(a). Find all intervals on which f is concave up or down.
(b). Find the location(s)(i.e. x-coordinate(s)) of all inflection points.
