1. Solve the following inequalities. Write your solution in interval notation and sketch it on the numberline.
(a). $2 x^{2}+x \geq 3$
$\left(-\infty,-\frac{3}{2}\right] \cup[1, \infty)$
(b). $\frac{(x-3)^{2}(x+1)}{x+4} \geq 0$
$(-\infty,-4) \bigcup[-1, \infty)$
2. Section 1.1, \#10

No, it is not a function. It fails the VLT.
3. Given $f(x)= \begin{cases}-1, & x \leq-1 \\ x, & -1<x \leq 2 \\ x^{2}+1, & x>2\end{cases}$
(a). Find the domain and sketch the function.
domain: All real numbers
(b). Find $f(-2), f(2)$, and $f(4)$.

$$
f(-2)=-1, f(2)=2, f(4)=17
$$

4. Find the domain of $f(x)=\frac{1}{\sqrt{x^{2}+x}}$.

$$
(-\infty,-1) \bigcup(0, \infty)
$$

5. Section $1.4 \# 7$
6. Section $1.5 \# 7,9,17$
7. Evaluate the following limits, if they exist (clearly indicate $+\infty$ or $-\infty$ in the case of an infinite limit). If the limit does not exist, explain the reason why.
(a). $\lim _{x \rightarrow 0} \frac{x-3}{x(x+4)}$ DNE (one-sided limits are different)
(d). $\lim _{x \rightarrow 0} \frac{x-3}{x^{2}(x+4)}=-\infty$
(b). $\lim _{x \rightarrow-4} \frac{x^{2}+2 x-8}{x+4}=-6$
(e). $\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{1}{2 \sqrt{x}}$
(c). $\lim _{x \rightarrow 0} \frac{\sqrt{3 x^{2}+4}}{x-4}=-\frac{1}{2}$
(f). $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}3, & x \leq 1 \\ 1, & x>1\end{cases}$
8. Given that $\lim _{x \rightarrow 1} f(x)=2, \lim _{x \rightarrow 1} g(x)=4, \lim _{x \rightarrow 1} h(x)=0$, find the following limits if they exist.
(a). $\lim _{x \rightarrow 1} f(x)-g(x)=-2$
(b). $\lim _{x \rightarrow 1} f(x) \cdot g(x)=8$
(c). $\lim _{x \rightarrow 1} h(x) / g(x)=0$
(d). $\lim _{x \rightarrow 1} g(x) / h(x) \quad$ DNE (One-sided limits are $+\infty$ or $-\infty$, but not enough info to determine which one or if they agree.)
9. For each of the following functions,
(i) find all of the x-values, if any, where $\mathrm{g}(\mathrm{x})$ is discontinuous and
(ii) indicate whether it is a removable, infinite, or jump discontinuity.
(a). $g(x)=\frac{x^{2}-x-6}{x\left(x^{2}-9\right)}$
infinite at $x=0$,
infinite $x=-3$,
removable at $x=3$
(b). $f(x)= \begin{cases}x^{2}-1, & x \leq 1 \\ 1-x & x>1\end{cases}$

Continuous everywhere
10. Given the function $f(x)=x^{3}-2 x^{2}+8 x-1$, use the Intermediate Value Theorem to show that there is a number c where $0<c<2$, such that $f(c)=6 . \quad f(0)=-1$ and $f(2)=15$. Since $-1 \leq 6 \leq 15$ AND f is continuous, then the IVT guarantees $f(x)$ must pass through $y=6$ for some value of $x=c$ in the interval $(0,2)$.
11. Suppose $f(1)=3, f^{\prime}(1)=-2, f(5)=8$, and $f^{\prime}(5)=15$. Let P be the point on the graph $y=f(x)$ where $x=1$. Let Q be the point on the graph of $y=f(x)$ where $x=5$.
(a). Find the equation of the secant line $P Q$.

$$
\begin{array}{r}
y-3=\frac{5}{4}(x-1) \\
y-3=-2(x-1)
\end{array}
$$

(b). Find the equation of the tangent line to $y=f(x)$ at P.
12. Section $2.1 \# 49$
$T^{\prime}(8)$ represents the rate at which the temperature is changing at $8 \mathrm{am} . T^{\prime}(8) \approx 3.75^{\circ} \mathrm{F} /$ hour.
13. Given $f(x)=x^{2}-x$, use the limit definition $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ to find the slope of the tangent line to the curve at $x=2$. Use your result to write an equation of the tangent line at $x=2$.

$$
m=3, y-2=3(x-2)
$$

14. Suppose the position of a particle at time t seconds is given by $s(t)=\sqrt{t}$ meters. Use the limit definition to find the velocity of the particle at time $t=5$.

$$
v(5)=\frac{1}{2 \sqrt{5}}
$$

15. Use the limit definition of the derivative to find $f^{\prime}(x)$ for $f(x)=\frac{1}{x^{2}}$. [You must use the limit definition.] $\quad f^{\prime}(x)=-\frac{2}{x^{3}}$
16. Both the function f and its derivative f^{\prime} are plotted on the same set of axes below. Which curve represents the function and which curve represents the derivative? Justify your answer. dashed (black) is $f(x)$ solid (red) is $f^{\prime}(x)$ Everywhere the dashed (black) curve has a horizontal tangent line (slope $=0$), the solid (red) curve goes through 0 .

17. Section $2.2 \# 3,15,39$.
18. Use the limit definition $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ to show that $f(x)=|x-5|$ is not differentiable at $x=5$. Simplify the limit and use the definition of $|x|$ to show that the one-sided limits are different.
19. Differentiate the following using Differentiation Rules.
(a). $y=10 x^{3}-3 x+7$

$$
y^{\prime}=30 x^{2}-3
$$

(b). $y=(3 x)^{3}$
$\frac{d y}{d x}=81 x^{2}$
(c). $y=\frac{x+4 x^{3}-3}{x^{4}+3}$

$$
y^{\prime}=\frac{\left(x^{4}+3\right)\left(1+12 x^{2}\right)-\left(x+4 x^{3}-3\right)\left(4 x^{3}\right)}{\left(x^{4}+3\right)^{2}}
$$

(d). $s(t)=t^{2}\left(3 t-4 t^{3}\right)$

$$
s^{\prime}(t)=9 t^{2}-20 t^{4}
$$

(e). $g(\theta)=\frac{\theta^{3} \sin \theta}{2 \theta+\sec \theta}$

20. Find an equation of the tangent line to the curve $f(x)=\frac{3}{x^{2}}-\sqrt{x}$ at $x=1 . \quad y-2=-\frac{13}{2}(x-1)$
21. Find an equation of the tangent line to the curve $y=3 \tan x$ at the point $x=\frac{\pi}{3}$ $y-3 \sqrt{3}=4\left(x-\frac{\pi}{3}\right)$
22. Given the following information, find the values of the remaining trigonometric functions.
$\tan \theta=3, \quad \pi<\theta<\frac{3 \pi}{2}$.

$$
\sin \theta=-\frac{3}{\sqrt{10}}, \cos \theta=-\frac{1}{\sqrt{10}}, \tan \theta=3, \quad \csc \theta=-\frac{\sqrt{10}}{3}, \sec \theta=-\sqrt{10}, \quad \cot \theta=\frac{1}{3}
$$

23. Given $\theta=\frac{3 \pi}{4}$, find $\sin 2 \theta$.
24. Solve the following equations for x.
(a). $2 \sin ^{2} x-\sqrt{2} \sin x=0(x$ in $[0,2 \pi])$

$$
x=0, \pi, 2 \pi, \frac{\pi}{4}, \frac{3 \pi}{4}
$$

(b). $\cos \left(\frac{x}{2}\right)=0(x$ in $[0,2 \pi]) \quad x=\pi$

