Name: ______ Math 151, Calculus I – Crawford

Exam 1 24 September 2019

Score	
1	/10
2	/14
3	/8
4	/16
5	/14
6	/10
7	/10
8	/10
9	/4
10	/6
Total	/100

- Calculators, books, notes (in any form), cell phones, and any unauthorized sources are <u>not</u> allowed.
- You may use the given Unit Circle.
- Clearly indicate your answers.
- Show all your work partial credit may be given for written work.
- Good luck!

1. (10 pts). Find the domain of $f(x) = \sqrt{8x - 2x^2}$.

2. (14 pts). Evaluate the following limits, if they exist. Clearly indicate $+\infty$ or $-\infty$ in the case of an infinite limit. If the limit does not exist, clearly explain the reason why.

(a).
$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 + 3x - 10}$$

(b).
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$$

- **3.** (8 pts). Given the graph of f(x) above,
- (a). Is f continuous from the right at x = -2?

(b). State which type of discontinuity is at x = 2.

(c). Explain why the function is discontinuous at x = 2. i.e., Explain which of the three conditions from the definition of continuity do not hold. [Stating what type of discontinuity is not sufficient.]]

(d). Is f differentiable at x = 2?

(a). Find the average velocity of the particle over the time interval [1,3]. [Include units in your answer.]

(b). Use the limit definition $v(a) = \lim_{t \to a} \frac{s(t) - s(a)}{t - a}$ or $v(a) = \lim_{h \to 0} \frac{s(a + h) - s(a)}{h}$ to find the instantaneous velocity when t = 1. [Include units in your answer.] You must use the limit definition and you must show all of your work.

[Note: $s'(t) = v(t) = -\frac{12}{(3+x)^2}$, if you want to check your answer.]

Page 5

For the remainder of the test, use the DIFFERENTIATION RULES to find any needed derivatives. Do <u>NOT</u> use the limit definition.

5. (14 pts). Differentiate the following using Differentiation Rules. Do <u>**NOT**</u> use the limit definition! [Do not simplify.]

(a).
$$y = 5x^4 + \frac{1}{3}x + x\sqrt{x}$$

(b). $f(x) = (x^2 + 4x - 3)\cos x$

6. (10 pts). Find the first **and** second derivatives of $g(\theta) = \sec \theta$.

8. (10 pts). Solve the following equation for all x.

 $\cos^2(x) - \frac{1}{4} = 0$

9. (4 pts). True or False. Clearly indicate whether the following statements are true or false.

- T F If f(1) < 0 and f(4) > 0, then there exists a number c in (1, 4) such that f(c) = 0.
- T F If the graph of a function y = f(x) is given below, then the derivative f'(2) > 0.

10. (6 pts). The figure below shows the graph of f, f', and f''. Match the solid, dashed, and dotted curves to the correct function f, f', or f''.

[Fill in the blank with f, f', or f''.]

Solid:

Dashed:

Dotted: