Name:
Math 151, Calculus I - Crawford
Exam 1
24 September 2019

Score	
1	$/ 10$
2	$/ 14$
3	$/ 8$
4	$/ 16$
5	$/ 14$
6	$/ 10$
7	$/ 10$
8	$/ 6$
9	$/ 100$
10	
Total	

1. (10 pts). Find the domain of $f(x)=\sqrt{8 x-2 x^{2}}$.
2. (14 pts). Evaluate the following limits, if they exist. Clearly indicate $+\infty$ or $-\infty$ in the case of an infinite limit. If the limit does not exist, clearly explain the reason why.
(a). $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x^{2}+3 x-10}$
(b). $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$

3. (8 pts). Given the graph of $f(x)$ above,
(a). Is f continuous from the right at $x=-2$?
(b). State which type of discontinuity is at $x=2$.
(c). Explain why the function is discontinuous at $x=2$. i.e., Explain which of the three conditions from the definition of continuity do not hold. [Stating what type of discontinuity is not sufficient.]]
(d). Is f differentiable at $x=2$?
4. $(16 \mathrm{pts})$. The position of a particle at time t seconds is given by $s(t)=\frac{12}{3+t} \mathrm{~cm}$.
(a). Find the average velocity of the particle over the time interval $[1,3]$. [Include units in your answer.]
(b). Use the limit definition $v(a)=\lim _{t \rightarrow a} \frac{s(t)-s(a)}{t-a}$ or $v(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}$ to find the instantaneous velocity when $t=1$.
[Include units in your answer.]
You must use the limit definition and you must show all of your work.
[Note: $s^{\prime}(t)=v(t)=-\frac{12}{(3+x)^{2}}$, if you want to check your answer.]

For the remainder of the test, use the Differentiation Rules to find any needed derivatives. Do NOT use the limit definition.
5. (14 pts). Differentiate the following using Differentiation Rules. Do $\underline{\text { NOT }}$ use the limit definition!
[Do not simplify.]
(a). $y=5 x^{4}+\frac{1}{3} x+x \sqrt{x}$
(b). $f(x)=\left(x^{2}+4 x-3\right) \cos x$
6. (10 pts). Find the first and second derivatives of $g(\theta)=\sec \theta$.
7. $(10 \mathrm{pts})$. Find an equation of the tangent line to $y=\frac{x^{2}-1}{x+2}$ when $x=2$.
8. (10 pts). Solve the following equation for all x. $\cos ^{2}(x)-\frac{1}{4}=0$
9. (4 pts). True or False. Clearly indicate whether the following statements are true or false.
$\mathrm{T} \quad \mathrm{F}$ If $f(1)<0$ and $f(4)>0$, then there exists a number c in $(1,4)$ such that $f(c)=0$.

T F If the graph of a function $y=f(x)$ is given below, then the derivative $f^{\prime}(2)>0$.

10. (6 pts). The figure below shows the graph of f, f^{\prime}, and $f^{\prime \prime}$. Match the solid, dashed, and dotted curves to the correct function f, f^{\prime}, or $f^{\prime \prime}$.

[Fill in the blank with f, f^{\prime}, or $f^{\prime \prime}$.]

Solid: \qquad

Dashed: \qquad

Dotted: \qquad

