Graphs of Parent Functions

$$y = x$$

$$y = x^2$$

$$y = x^3$$

$$y = \sqrt{x}$$

$$y = |x|$$

$$y = \frac{1}{x}$$

Transformations

Shifts

For c > 0, the following translations shift the original graph y = f(x) as indicated.

New Function

 $\underline{\mathbf{Shift}}$

Example

Graph

$$y = f(x) + c$$

$$y = x^2 + 2$$

$$y = f(x) - c$$

$$y = x^2 - 3$$

$$y = f(x - c)$$

$$y = (x - 4)^2$$

$$y = f(x+c)$$

$$y = (x+1)^2$$

Ex: Sketch $y = \sqrt{x+2} + 3$

REFLECTIONS

$$y = f(-x)$$

reflects the entire graph of y = f(x) through the

$$y = -f(x)$$

reflects the entire graph of y = f(x) through the

Ex: Sketch y = -|x|

Ex: Sketch $y = \sqrt{-x}$

Stretching or Compression For c > 0, the following transformations stretch or compress the original graph y = f(x) as indicated.

For c > 1, _____ by a factor of cy = cf(x)

For 0 < c < 1, _____ by a factor of c

For c > 1, _____ by a factor of $\frac{1}{c} < 1$ y = f(cx)

For 0 < c < 1, _____ by a factor of $\frac{1}{c} > 1$

Ex: Given the following graph of y = f(x),

Sketch

(a).
$$y = 2f(x)$$

(b).
$$y = \frac{1}{3}f(x)$$

(c).
$$y = f(4x)$$

(d).
$$y = f\left(\frac{1}{2}x\right)$$

