What is a function?

4 Ways to Represent a Function:

Many functions represented in all 4 ways:
Ex: Words:
Equation: $y=3 x-4$

Table:
Graph:

Independent Variable:
Dependent Variable:

Important Properties of a Function from Set A to Set B

1. Each element in the set A (domain) \qquad be matched with
2. Some elements in B \qquad be matched with
3. Two or more elements in set A (domain) \qquad be matched with
4. A single element in set A (domain) \qquad be matched with

To determine whether a relation (or rule) is a function, you must determine whether each input value in set A (domain) is matched with exactly one output value.

Ex Does the following relation define y as a function of x ? (Verbally)
The input value x is each of your home addresses, the output value y is the person living there.

Ex Does the following relation define y as a function of x ? (Numerically)

Input, x	2	3	8	14	20
Output, y	3	4	-6	-8	15

Ex Does the following set of ordered pairs define a function from $A=\{2,4,6,8\}$ to $B=\{-1,0,1\}$? (Numerically) $\{(2,1),(4,1),(6,1),(8,1)\}$

Ex Determine whether the equation represents y as a function of x. (Algebraically)
$3 x+4 y-5=3$

Ex Determine whether the equation represents y as a function of x. (Algebraically)
$9 x^{2}+y^{2}=25$
$\underline{\text { Ex }}$ Determine whether the graph represents y as a function of x. (Graphically)
(a)

(b)

Homework:

Section 2.2, p. 182: \#5-19 (odd)
Section 2.3, p. 194: \#11, 13

