Functions page 1

What is a function?

4 Ways to Represent a Function:

	tays to represent a ranetion.
1.	Verbally (

Ex: Favorite Ice Cream Flavor

2. Analytically ()
Ex: $y = 3x - 4$ or $f(x) = 3x - 4$	

3. Numerically (

Ex: Ball Bounce

LA. Dun Dounce			
Drop	Bounce		
Height (in)	Height (in)		
36	25.0		
40	29.0		
44	31.5		
48	35.0		
52	37.5		
56	42.0		
60	46.5		

4. Graphically (

Ex: EKG Reading

Manv	functions	represented	in a	all 4	wavs:
ivianiy	Tunctions	represented	111 (uii i	ways.

Ex: Words:

Equation: y = 3x - 4

Table:

Graph:

Independent Variable:

Dependent Variable:

Important Properties of a Function from Set A to Set B

- 1. Each element in the set A (domain) ______ be matched with
- 2. Some elements in B ______ be matched with
- 3. Two or more elements in set A (domain) ______ be matched with
- 4. A single element in set A (domain) ______ be matched with

To determine whether a relation (or rule) is a function, you must determine whether each input value in set A (domain) is matched with exactly one output value.

 $\mathbf{E}\mathbf{x}$ Does the following relation define y as a function of x? (Verbally)

The input value *x* is each of your home addresses, the output value *y* is the person living there.

 $\mathbf{E}\mathbf{x}$ Does the following relation define y as a function of x? (Numerically)

Input, x	2	3	8	14	20
Output, y	3	4	-6	-8	15

Ex Does the following set of ordered pairs define a function from $A = \{2,4,6,8\}$ to $B = \{-1,0,1\}$? (Numerically)

 $\{(2,1), (4,1), (6,1), (8,1)\}$

 $\mathbf{\underline{Ex}}$ Determine whether the equation represents y as a function of x. (Algebraically)

3x + 4y - 5 = 3

 $\mathbf{E}\mathbf{x}$ Determine whether the equation represents y as a function of x. (Algebraically)

 $9x^2 + y^2 = 25$

Functions

page 4

 $\mathbf{E}\mathbf{x}$ Determine whether the graph represents y as a function of x. (Graphically)

(a)

(b)

Section 2.2, p. 182: #5-19 (odd) Section 2.3, p. 194: #11, 13