Score	
1	$/ 12$
2	$/ 6$
3	$/ 14$
4	$/ 6$
5	$/ 14$
6	$/ 6$
7	$/ 6$
8	$/ 6$
9	$/ 12$
10	$/ 100$
11	
12	
Total	

Formulas that may or may not be helpful:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad x=\frac{-b}{2 a}$

1. (12 pts). Write an equation of a line with the given properties. Write your final answer in the form $y=m x+b$.
(a). Passes through the points $(3,4)$ and $(5,4)$.
(b). Passes through the point $(2,-1)$ and is perpendicular to the line $4 x+6 y=6$.
2. (6 pts). A pharmaceutical salesperson receives a monthly salary of $\$ 2500$ plus a commission of 7% of sales. Write a linear equation for the salesperson's monthly wages W in terms of monthly sales s.
3. (14 pts). Solve the following equations for x. Check your solutions and clearly indicate your answer.
(a). $\sqrt{x+3}-6=0$
(b). $|4-2 x|=6 x$
4. (6 pts). Solve the following linear inequality. Then graph the solution on the real number line.
$-2(x+2) \geq 3 x+4$
5. (14 pts). Solve the following nonlinear inequalities. Then graph the solution on the real number line.
(a). $x^{2}-3 x-9>1$
(b). $\frac{x+4}{x} \leq 0$
6. (6 pts). Determine whether the following function is odd, even, or neither. [You must show algebraic work to justify your answer.]
$f(x)=x^{3}+x$
7. (4 pts). Given the graph of $f(x)$ below,

(a). Which of the following is a graph of $y=f(-x)-2$?
(i)

(ii)

(iii)

(b). Which of the following is a graph of $y=f\left(\frac{1}{2} x\right)$?
(i)

(ii)

(iii)

8. (6 pts). Given $f(x)=x^{4}$ and $g(x)=x+5$, evaluate $(f g)(-2)$.
9. (6 pts). Given $f(x)=x-4$ and $g(x)=x^{2}+3$, find and simplify $f \circ g$.
10. (6 pts). Write the standard form of the equation of a parabola that has vertex $(2,3)$ and passes through the point $(3,-5)$.

Standard form: $f(x)=a(x-h)^{2}+k$
11. (12 pts). Given the quadratic function $f(x)=\frac{1}{2} x^{2}-4 x+6$,

> [You must show algebraic work to justify your answers.]
(a). Find the vertex point algebraically. [i.e., Use $x=\frac{-b}{2 a}$]
(b). Find the x-intercepts algebraically.
12. (10 pts). Given $f(x)=\sqrt{2 x+4}$,
(a). Find the inverse function algebraically. [Note: f does pass the Horizontal Line Test.]
[You must show all steps.]
(b). Graph the original function $f(x)=\sqrt{2 x+4}$ on your calculator (or by hand).

