Name: ____

Math 121, College Algebra – Crawford

Exam 2-A 12 April 2017

	Score	
	1	/12
	2	/6
	3	/14
	4	/6
lowed.	5	/14
all work. it may be given for written work.	6	/6
	7	/4
ward extra credit on Quiz 4.	8	/6
	9	/6
	10	/6
	11	/12
	12	/10
	Total	/100

• Books or notes (in any form) are not allowed.

- You may use a calculator, but show all work.
- Show all your work partial credit may be given for written work.
- Clearly indicate your answers.
- Problems 6, 7, 8, and 9 will count toward extra credit on Quiz 4
- Good Luck!

Formulas that may or may not be helpful:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \qquad x = \frac{-b}{2a}$$

- 1. (12 pts). Write an equation of a line with the given properties. Write your final answer in the form y = mx + b.
- (a). Passes through the points (3,4) and (5,4).

(b). Passes through the point (2, -1) and is perpendicular to the line 4x + 6y = 6.

2. (6 pts). A pharmaceutical salesperson receives a monthly salary of \$2500 plus a commission of 7% of sales. Write a *linear* equation for the salesperson's monthly wages W in terms of monthly sales s.

3. (14 pts). Solve the following equations for x. Check your solutions and clearly indicate your answer.

(a). $\sqrt{x+3} - 6 = 0$

(b). |4 - 2x| = 6x

4. (6 pts). Solve the following linear inequality. Then <u>graph</u> the solution on the real number line. $-2(x+2) \ge 3x+4$ 5. (14 pts). Solve the following nonlinear inequalities. Then graph the solution on the real number line.

(a). $x^2 - 3x - 9 > 1$

(b).
$$\frac{x+4}{x} \le 0$$

6. (6 pts). Determine whether the following function is odd, even, or neither. [You must show algebraic work to justify your answer.]

 $f(x) = x^3 + x$

7. (4 pts). Given the graph of f(x) below,

(a). Which of the following is a graph of y = f(-x) - 2?

8. (6 pts). Given $f(x) = x^4$ and g(x) = x + 5, evaluate (fg)(-2).

9. (6 pts). Given f(x) = x - 4 and $g(x) = x^2 + 3$, find and simplify $f \circ g$.

10. (6 pts). Write the standard form of the equation of a parabola that has vertex (2,3) and passes through the point (3, -5). Standard form: $f(x) = a(x - h)^2 + k$

11. (12 pts). Given the quadratic function $f(x) = \frac{1}{2}x^2 - 4x + 6$,

[You must show algebraic work to justify your answers.]

(a). Find the vertex <u>point</u> algebraically. [i.e., Use $x = \frac{-b}{2a}$]

(b). Find the *x*-intercepts algebraically.

12. (10 pts). Given $f(x) = \sqrt{2x+4}$,

(a). Find the inverse function algebraically. [Note: f does pass the Horizontal Line Test.] [You must show all steps.]

(b). Graph the original function $f(x) = \sqrt{2x+4}$ on your calculator (or by hand).

From the graph, what is the <u>range</u> of f(x)?

What is the <u>domain</u> of the inverse function $f^{-1}(x)$?