The following formulas may or may not be useful: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ 1. Sketch the following intervals on the number line.

(a).
$$-3 \le x < 2$$
 (b). $(-\infty, 6]$

- **2.** Find the distance between a = 45 and b = -30.
- **3.** Evaluate each of the following expressions for the given value of x.
- 3 (b). $6x^{-2}$, x = 2(a). -3x - 2, x = -4. 10 $\overline{2}$

4. Evaluate the following. Simplify and reduce fractions, when possible.

- (b). $\frac{1}{2} \frac{2}{3} + \frac{5}{8}$ 11 (a). |4+6| - |4-6|8 $\overline{24}$
- (c). $\frac{3 \cdot 2^{-2}}{-3^3 \cdot 2^{-1}}$ $-\frac{1}{18}$ (d). -2^4 -16

5. Simplify the following expressions.

(b). $\left(\frac{3}{z}\right)^2 \left(\frac{2}{z}\right)^{-3}$ 9z(a). $(-3x)^3$ $-27x^{3}$ 8

6. Rewrite each expression with positive exponents and simplify.

 $\frac{3}{4x^2}$ (a). $3(2xy^0)^{-2}$ (b). $5^n \cdot 5^{3n}$ 5^{4n}

7. Evaluate the following powers and roots. If it is not a real number, clearly state so.

(a).
$$\sqrt[5]{-32}$$
 -2 (b). $\left(\frac{36}{25}\right)^{1/2}$ $\frac{6}{5}$

8. Simplify the following expressions and leave the radical sign in your answer. [Assume nonnegative variables.]

(b). $4\sqrt{9y} + 5\sqrt{y}$ (a). $\sqrt{27a^4b^7}$ $3a^2b^3\sqrt{3b}$ $17\sqrt{y}$

9. Rationalize the denominator and simplify: $\frac{10}{\sqrt{5}} = 2\sqrt{5}$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

10. Simplify the following. Use only positive exponents (i.e. no radicals, no negative exponents).

(a).
$$\sqrt[3]{x^5}$$
 (b). $y \cdot y^{-2} \cdot y^{-1/2} \cdot y^{5/2}$

11. Perform the indicated operations and simplify.

- (a). (x 2y)(x + 2y)(b). $(4a + 3b)^2$ (c). 2x(x - 3)(4x - 1) $8x^3 - 26x^2 + 6x$ (d). $(x^2 - 3x + 1)(2x^2 + x - 4)$ $2x^4 - 5x^3 - 5x^2 + 13x - 4$
- 12. Section P.3 #89

13. Factor *completely*.

- (a). $2x^3y + 2xy 3x^2 3$ [Grouping] $(x^2 + 1)(2xy 3)$ (b). $2x^3 8x$ 2x(x+2)(x-2)
- (c). $x^2 + 3x 4$ (x + 4)(x 1) (d). $3x^2 - 10x + 8$ (3x - 4)(x - 2) (e). $x^4 + 12x^2 + 36$ (x² + 6)² (f). $6x^2 - 7x - 5$ (2x + 1)(3x - 5)

14. Use one of the factorization formulas involving cubes to factor $8x^3 + 1$ $(2x + 1)(4x^2 - 2x + 1)$ **15.** Perform the indicated operations and simplify.

- (a). $\frac{3x+9}{x^2-9} \cdot \frac{x^2-6x+9}{9}$ $\frac{x-3}{3}$ (b). $\frac{x^2-4x+3}{1-x^2} \div (x^2+x-12)$ $\frac{-1}{(1+x)(x+4)}$
- (c). $\frac{1-2a}{4a} \frac{a+1}{4a}$ $-\frac{3}{4}$ (d). $\frac{4}{3} + \frac{2x+1}{4}$ $\frac{19+6x}{12}$
- (e). $\frac{x}{x+2} \frac{x+2}{x^2-4} + 3$ $\frac{4x^2 3x 14}{(x+2)(x-2)}$ (f). $\frac{3a^2bc^4}{8a^3b^2c^5} \div \frac{2abc}{a^2b^3c^2}$ $\frac{3b}{16}$

16. Simplify the complex fraction.
$$\frac{\frac{x}{\sqrt{y}} + \sqrt{y}}{x+y} \qquad \qquad \frac{1}{\sqrt{y}} = \frac{\sqrt{y}}{y}$$

- **17.** Given the points (2, -4) and (5, 8).
- (a). Plot the points in the Cartesian plane.
- (b). Find the distance between the two points. $\sqrt{153}$ (c). Find the midpoint between the two points. $\left(\frac{7}{2},2\right)$
- **18.** Section P.6 #40 \$2.36
- **19.** Does the point (4, 2) lie on the graph of $x^2 y = 0$.

20. Use the algebraic tests to check for symmetry with respect to both axes and the origin for $y = x^3 - x$. *x*-axis symmetry: No *y*-axis symmetry: No Symmetry with respect to the origin: Yes

No

21. Write and equation of a the circle with center at (3,-1) and radius 4. $(x-3)^2 + (y+1)^2 = 16$

22. Solve the following equations. If there is no solution, clearly state so.

(a).
$$3(4-2x) + 3 = 4x + 1$$

(b). $\frac{2x}{3} + 2x = \frac{3}{2}$
(c). $\frac{1}{x} + \frac{2}{x-6} = 0$
 $x = 2$

(d).
$$\frac{1}{x} + \frac{3}{x-6} = \frac{2x+6}{x(x-6)}$$
 No Solution

23. The annual operating costs for a truck used for a small business is given by C = 0.25m + 1800, where m is the number of miles traveled by a truck in one year. What number of miles will yield an annual operating cost of \$5000? 12800 miles

24. Write a mathematical model for and solve the following problem: The sum of 3 consecutive natural numbers is 465. 154, 155, 156

25. You invest \$12,000 at 3.5% and 4.5% simple interest. During one year, the two accounts earned \$500. How much did you invest in each account? \$4000 at 3.5% and \$8000 at 4.5%.

26. Solve

(a). By factoring: $x^2 - 9x + 20 = 0$	x = 5, 4
(b). By extracting the square roots: $(4x + 3)^2 = 16$	$x=\frac{1}{4},-\frac{7}{4}$
(c). By completing the square: $x^2 + 12x + 9 = 0$	$x = -6 \pm 3\sqrt{3}$
(d). By using the quadratic formula: $2x^2 + 2x = 1$	$x = \frac{-1 \pm \sqrt{3}}{2}$
(e). By any method: $2x^2 + 5x = 12$	$x = \frac{3}{2}, -4$

27. Section 1.4 #120, 126

28. Solve the following equations for x. Check your solutions.

- (a). $x^4 + 2x^3 + 3x^2 + 6x = 0$ x = 0, -2
- (b). $4x^3 4x^2 24x = 0$
- (c). $x^4 9x^2 + 20 = 0$ [Quadratic Type] $x = \pm 2, \pm \sqrt{5}$

(d).
$$x = \frac{3}{x} - 2$$
 $x = -3, 1$