Use properties of logarithms to expand the following. Go as far as you can using the properties.

1. $\log_3 \frac{x^5}{y^3}$ **2.** $\log_b \sqrt[3]{N}$

3.
$$\log(3^2\sqrt[3]{4})$$
 4. $\log_2(50 \cdot 2^{-0.2t})$

5.
$$\ln[P(1+r)^t]$$
 6. $\log_{\frac{1}{2}} \frac{\sqrt{a}}{b^3}$

Combine the following into a single logarithm of the form $\log_b[$]. Simplify as much as possible. 7. $2 \ln x - 3 \ln(x+1)$ 8. $\log_4 x + \frac{2}{3} \log_4(x+5)$

9.
$$\frac{1}{2}\log_2 9 - \log_2 6$$
 10. $\frac{1}{2}\log 4 - \frac{2}{3}\log 8 + 2\log 2$

Use properties of logarithms to combine the LHS and find x. [Be sure to check your answer in the original equation.]

11. $\log x + \log 4 = \log 20$ **12**. $\log_8(x+2) + \log_8 x = \log_8 24$

Use the change of base formula to find the following.

13. log₅ 18

14. $\log_4(.14)$

Use the change of base formula and your calculator to graph the following. [Copy the graph below and label the axes.] 15. $y = \log_7 x$

1.
$$5 \log_3 x - 3 \log_3 y$$
2. $\frac{1}{3} \log_b N$
3. $2 \log 3 + \frac{1}{3} \log 4$
4. $\log_2(50) - 0.2t$
5. $\ln P + t \ln(1 + r)$

6. $\frac{1}{2} \log_{\frac{1}{2}} a - 3 \log_{\frac{1}{2}} b$
7. $\ln \left(\frac{x^2}{(x+1)^3}\right)$
8. $\log_4 \left(x \sqrt[3]{(x+5)^2}\right)$
9. -1
10. $\log 2$

11. $x = 5$
12. $x = 4$
13. 1.79588
14. -1.41825
15. calculator

Homework: Section 5.2, p. 338: #27, 31, 33, 35-47(odd), 51, 52, 53, 55, 59, 63