Use properties of logarithms to expand the following. Go as far as you can using the properties.

1. $\log _{3} \frac{x^{5}}{y^{3}}$
2. $\log _{b} \sqrt[3]{N}$
3. $\log \left(3^{2} \sqrt[3]{4}\right)$
4. $\log _{2}\left(50 \cdot 2^{-0.2 t}\right)$
5. $\ln \left[P(1+r)^{t}\right]$
6. $\log _{\frac{1}{2}} \frac{\sqrt{a}}{b^{3}}$

Combine the following into a single logarithm of the form $\log _{b}[]$. Simplify as much as possible.
7. $2 \ln x-3 \ln (x+1)$
8. $\log _{4} x+\frac{2}{3} \log _{4}(x+5)$
9. $\frac{1}{2} \log _{2} 9-\log _{2} 6$
10. $\frac{1}{2} \log 4-\frac{2}{3} \log 8+2 \log 2$

Use properties of logarithms to combine the LHS and find x. [Be sure to check your answer in the original equation.]
11. $\log x+\log 4=\log 20$
12. $\log _{8}(x+2)+\log _{8} x=\log _{8} 24$

Use the change of base formula to find the following.
13. $\log _{5} 18$
14. $\log _{4}(.14)$

Use the change of base formula and your calculator to graph the following. [Copy the graph below and label the axes.]
15. $y=\log _{7} x$

1. $5 \log _{3} x-3 \log _{3} y$
2. $\frac{1}{3} \log _{b} N$
3. $2 \log 3+\frac{1}{3} \log 4$
4. $\log _{2}(50)-0.2 t$
5. $\ln P+t \ln (1+r)$
6. $\frac{1}{2} \log _{\frac{1}{2}} a-3 \log _{\frac{1}{2}} b$
7. $\ln \left(\frac{x^{2}}{(x+1)^{3}}\right)$
8. $\log _{4}\left(x \sqrt[3]{(x+5)^{2}}\right)$
9. -1
10. $\log 2$
11. $x=5$
12. $x=4$
13. 1.79588
14. -1.41825
15. calculator
