Note: The first part of this review is of the new material since Exam 3.

(b). Write in logarithmic form: $8^{1/3} = 2$ 1. (a). Write in exponential form: $\log_3 81 = 4$ $3^4 = 81$ $\log_8 2 = \frac{1}{2}$ **2.** Graph the following functions (without a calculator) and clearly label 2 points.

(a).
$$y = 2e^x$$
 (b). $y = 3^{-x}$

3. Use properties of logarithms to expand the following logarithms as far as you can.

(a). $\log_2 x^3 y^4 = 3 \log_2 x + 4 \log_2 y$ (b). $\log \frac{1}{\sqrt{A}} = -\frac{1}{2} \log A$ (c). $\log_b [P(1+r)^t] = \log_b P + t \log_b (1+r)$

4. Use properties of logarithms to combine the following into a single logarithm.

(a).
$$\log x^3 - 2\log y = \log \frac{x^3}{y^2}$$
 (b). $\log_2(x-1) + \log_2(x+1) - \frac{1}{2}\log_2 x = \log_2 \frac{x^2 - 1}{\sqrt{x}}$

5. Use the change of base formula to rewrite and/or evaluate the following.

(b). $y = \log_2 x = \frac{\ln x}{\ln 2} \quad OR = \frac{\log x}{\log 2}$ (a). $\log_7 21 = \frac{\ln 21}{\ln 7} = 1.5645$ OR $= \frac{\log 21}{\log 7} = 1.5645$

6. Solve the following equations for x. [Do parts (a) and (b) without a calculator. Give both the exact answer and decimal approximation for parts (c-e)).]

(b). $\log_9 x = \frac{1}{2}$ (a). $3^{5x} = 81$ $x = \frac{4}{\epsilon}$ x = 3(c). $\ln(2x+3)^3 + 5 = 4$ $\frac{e^{-1/3} - 3}{2} \approx -1.1417$ (c). $120e^{-3x} + 10 = 450$ $\frac{\ln(11/3)}{-3} \approx -0.4331$ $\left(\frac{10000}{3}\right)^{1/3} \approx 14.938$ (e). $\log(3x) + 2\log(x) = 4$

7. After an advertising campaign, the monthly sales for stereos at a store is given by $S = 50,000(2)^{-0.85x} S$ is the monthly sales (in dollars) and x is the number of months that have passed since the end of the advertising.

 $S = 50,000(2)^{-0.85 \cdot 0} = $50,000.00$ (a). What is the monthly sales right at the end of the advertising? $S = 50,000(2)^{-0.85 \cdot 3} = \8537.75 (b). What is the monthly sales after 3 months? (c). When will the sales reach \$2,000? 5.46 months

8. An initial amount of 15 g of radioactive iodine decays according to $A(t) = 15e^{-0.087t}$ where t is given in days.

(a). How much is left after 2 days? A(2) = 12.6 g

Note: The remaining questions are a review of material previous to Exam 3.

Complete the following problems without a calculator

9. If $f(x) = x^2 - 3$, find and simplify: (a). f(-1) = -2(b). $f(2x) = 4x^2 - 3$

10. Graph the line 4y - 2x = 12. Find the x and y intercepts. Clearly label them on the graph. (0,3), (-6,0)

11. What is the slope of a line passing through the points (-2, 5) and (3, 4)

12. Are the following two lines are parallel, perpendicular, or neither? y = 2x - 3; $y = \frac{1}{2}x + \frac{1}{3}$ neither

- $m = -\frac{1}{5}$

Final Exam Review

13. Simplify the following. Reduce fractions when possible. Use only positive exponents.

(a).
$$-3^2 = -9$$
 (b). $\frac{3-2\cdot 4}{5^2} = -\frac{1}{5}$ (c). $|7-2| - |2-7| = 0$
(d). $x + 4 - [3a + 2x + 2(a + x + 2)] = -3x - 5a$ (e). $\frac{3^2}{3^{-1}3^4} = \frac{1}{3}$ (f). $(4^{-1/3})^{-3/2} = 2$

You may use a calculator on the remaining problems

14.

- (a). Write the following in exponential form and simplify: $x\sqrt{x}$ $x^{3/2}$
- (b). Write the following in radical form. Do not simplify: $2a^{3/4}$ $2\sqrt[4]{a^3}$
- (c). Simplify and leave your answer in radical form: $\sqrt{8x^3y^6}$
- **15.** Expand the following $4a(2a-3b)^2$ $16a^3-48a^2b+36ab^2$
- **16.** Factor completely:(a). $2x^3 18x = 2x(x-3)(x+3)$ (b). $3x^2 10x + 8 = (3x-4)(x-2)$ **17.** Solve the following equations for x:(a). $x^2 6 = x + 6$ x = 4, -3(b). $3x^2 10x + 8 = 0$ $x = 2, \frac{4}{3}$
- **18.** Perform the indicated operations and simplify
- (a). $\frac{x^2 + 3x}{x^2 9} \div \frac{3x}{x^2 x 6} = \frac{x + 2}{3}$ (b). $\frac{x}{x^2 4} \frac{4}{x + 2} + 1 = \frac{x^2 3x + 4}{x^2 4}$

19. Solve the following equation for x: 3(2x-5) = x+4

- **20.** Given the parabola $y = -3x + x^2$
- (a). Find the x and y coordinates of the vertex. $(\frac{3}{2}, -\frac{9}{4})$

21. Solve the following systems of linear equations algebraically. Show all your work. If the system is dependent or inconsistent, clearly state so.

(a).
$$\begin{cases} -3x + 2y = -4 \\ 2x + 4y = 8 \end{cases}$$
 $x = 2, y = 1$ (b).
$$\begin{cases} x - 3y = 5 \\ -3x + 9y = -10 \end{cases}$$
 Inconsistent; No Solution

22. A movie theater charges \$9 for adults and \$5.50 for children. On the opening day for the latest Harry Potter movie, the theater fills all 500 of its seats. If they collected \$3870, how many children and how many adults watched the movie? Set up, **but do not solve**, the system of equations needed to determine how many children and how many adults watched the movie. Clearly indicate what x and y represent.

Let x = number of adults and y = number of children. Then $\begin{array}{rrrr} x & + & y & = & 500 \\ 9x & + & 5.50y & = & 3870 \end{array}$

23. Solve the following inequality. Graph the solution on the number line. $x^2 - x - 6 \le 0$ [-2,3]

24. Given the system of inequalities $\begin{cases} x + 4y \ge 10\\ 2x + 6y \ge 18\\ x \ge 0\\ y \ge 0 \end{cases}$

(c). Minimize f = 3x + 2y subject to the same constraints

(a). Shade the feasible region

(b). Find the corners

(0,3), (10,0), (6,1)Minimum of 6 at (0,3).

 $2xy^3\sqrt{2x}$

19

5

(b). Is it a maximum or a minimum? min.