Part A No calculators allowed on Part A.

1. Given the quadratic function $y=-x^{2}+6 x-8$,
(a). Find the (x, y) coordinate of the vertex; Is it a maximum or a minimum?
$(3,1)$; maximum
(b). Find the x - and y - intercepts, if they exist.
x-int : $(2,0),(4,0) ; \quad y$-int : $(0,-8)$
(c). Graph the function (w/o calculator). Label the vertex and intercepts.

Part B You may use a calculator on Part B.
2. Solve the following systems of linear equations algebraically. Show all your work. If the system is dependent or inconsistent, clearly state so.
(a). $\left\{\begin{aligned} 3 x+2 y & =3 \\ -x+5 y & =16\end{aligned}\right.$
(b). $\left\{\begin{aligned} 2 x-6 y & =10 \\ -3 x+9 y & =-15\end{aligned}\right.$
(c). $\left\{\begin{aligned} x+3 y-8 z & =20 \\ y-3 z & =11 \\ 2 y+7 z & =-4\end{aligned}\right.$
(a). $(-1,3)$
(b). dependent
(c). $x=-11, y=5, z=-2$
3. A customer buys a blend of two coffees in the coffee shop: Kenyan, costing $\$ 8.50$ per pound and Jamaican Blue Mountain, costing $\$ 14.60$ per pound. He buys 3 pounds of the coffee blend which costs him $\$ 31.55$. How many pounds of each kind of coffee went into the mixture?
2.01 lbs of Kenyan; 0.99 lbs of Jamaican Blue
4. Solve the following equations
(a). by factoring: (i). $\quad 4 x^{2}-25=0$
Ans: $x=\frac{5}{2},-\frac{5}{2}$
(ii). $2 x^{2}-12=x^{2}+x$
Ans: $x=4,-3$
(d). by using the quadratic formula:
(i). $4 x^{2}-25=0$
Ans: $x=\frac{5}{2},-\frac{5}{2}$
(ii). $\quad 9 x^{2}-12 x+4=0$
Ans: $x=\frac{2}{3}$
(g). by any method you choose: (i). $\quad 2 x^{2}-7 x-4=0 \quad$ Ans: $x=4,-\frac{1}{2} \quad$ (ii). $\quad(x-3)(1-x)=-3 \quad$ Ans: $x=0,4$
5. Given the function $y=32-2 x^{2}$
(a). Find the x and y coordinate of the vertex. Is it is a maximum or minimum?
$(0,32)$ is a maximum
(b). Find the x - and y-intercepts. $\quad y$-int: $(0,32) ; \quad x$-int: $(4,0),(-4,0) \quad$ (c). Sketch the graph.
6. If the profit from the sale of x number of stereos is given by $P=90 x-200-x^{2}$,
(a). How many units must be sold to obtain a profit of $1200 ?$

20 or 70 stereos
(b). How many units must be sold to maximize profit?

45 stereos
(c). What is the maximum profit?
7. Find the equation of the parabola through the points $(0,-3)(1,4)(-1,-6)$

$$
y=2 x^{2}+5 x-3
$$

8. Solve the following inequalities. Write your answers in interval notation and graph it on the number line.
(a). $2 x+1>4$
$\left(\frac{3}{2}, \infty\right)$
(b). $2(7 x-3) \leq 12 x+16$
$(-\infty, 11]$
9. The percentage of adults who smoke cigarettes can be modeled by the equation $p=43.3-0.504 t$ where t is the number of years past 1960 .
(a). What percent does this model predict for 2013? [Hint: What value of t represents 2013?]
(b). In which year does the model predict that the percentage of adults who smoke cigarettes will be less than 10%.
10. Graph the solution region for each of the following.
(a). $3(x+y)<6 x-9$

(b). $\left\{\begin{aligned} x+2 y & <10 \\ 3 x+4 y & \leq 24 \\ 3 x+2 y & \leq 21 \\ x & \geq 0 \\ y & \geq 0\end{aligned}\right.$

11. Graph the solution region for the given system of inequalities. Find the corners.
$\left\{\begin{aligned} 3 x-y & \leq 4 \\ 2 x-y & \geq-3 \\ x & \geq 0 \\ y & \geq 0\end{aligned}\right.$
Corners: $(0,0),(0,3),(4 / 3,0),(7,17)$

12. Given the system of inequalities $\left\{\begin{aligned} x+4 y & \geq 10 \\ 2 x+6 y & \geq 18 \\ x & \geq 0 \\ y & \geq 0\end{aligned}\right.$
(a). Shade the feasible region
(b). Find the corners
$(0,3),(10,0),(6,1)$
(c). Minimize $f=3 x+2 y$ subject to the same constraints
13. Solve the following inequality. Graph the solution on the number line.
(a). $x^{2}-x-6 \leq 0$
$[-2,3]$
(b). $\frac{(x-3)^{2}}{(x+1)(x+2)} \geq 0$
$(-\infty,-2) \cup(-1, \infty)$
