<u>Part A</u> No calculators allowed on Part A.

- 1. Given the quadratic function $y = -x^2 + 6x 8$,
- (a). Find the (x, y) coordinate of the vertex; Is it a maximum or a minimum? (3,1); maximum
- (b). Find the x- and y- intercepts, if they exist. x-int : (2,0), (4,0);y-int : (0, -8)
- (c). Graph the function (w/o calculator). Label the vertex and intercepts.

Part B You may use a calculator on Part B.

2. Solve the following systems of linear equations algebraically. Show all your work. If the system is dependent or inconsistent, clearly state so.

(a).
$$\begin{cases} 3x + 2y = 3 \\ -x + 5y = 16 \end{cases}$$
 (b).
$$\begin{cases} 2x - 6y = 10 \\ -3x + 9y = -15 \end{cases}$$
 (c).
$$\begin{cases} x + 3y - 8z = 20 \\ y - 3z = 11 \\ 2y + 7z = -4 \end{cases}$$

(a). (-1,3) (b). dependent (c). $x = -11, y = 5, z = -2$

3. A customer buys a blend of two coffees in the coffee shop: Kenyan, costing \$8.50 per pound and Jamaican Blue Mountain, costing \$14.60 per pound. He buys 3 pounds of the coffee blend which costs him \$31.55. How many pounds of each kind of coffee went into the mixture? 2.01 lbs of Kenvan; 0.99 lbs of Jamaican Blue

4. Solve the following equations

- (a). by factoring: (i). $4x^2 25 = 0$ Ans: $x = \frac{5}{2}, -\frac{5}{2}$ (ii). $2x^2 12 = x^2 + x$ Ans: x = 4, -3(d). by using the quadratic formula: (i). $4x^2 - 25 = 0$ Ans: $x = \frac{5}{2}, -\frac{5}{2}$ (ii). $9x^2 - 12x + 4 = 0$ Ans: $x = \frac{2}{3}$ (g). by any method you choose: (i). $2x^2 - 7x - 4 = 0$ Ans: $x = 4, -\frac{1}{2}$ (ii). (x - 3)(1 - x) = -3 Ans: x = 0, 4
- 5. Given the function $y = 32 2x^2$
- (a). Find the x and y coordinate of the vertex. Is it is a maximum or minimum? (0, 32) is a maximum (b). Find the x- and y-intercepts. y-int: (0, 32);x-int: (4,0), (-4,0)(c). Sketch the graph.
- **6.** If the profit from the sale of x number of stereos is given by $P = 90x 200 x^2$,
- (a). How many units must be sold to obtain a profit of 1200? 20 or 70 stereos(b). How many units must be sold to maximize profit? 45 stereos
- (c). What is the maximum profit?
- 7. Find the equation of the parabola through the points (0, -3) (1, 4) (-1, -6) $y = 2x^2 + 5x - 3$

8. Solve the following inequalities. Write your answers in interval notation and graph it on the number line.

(b). $2(7x-3) \le 12x+16$ (a). 2x + 1 > 4 $\left(\frac{3}{2},\infty\right)$ $(-\infty, 11]$

- - \$1825

9. The percentage of adults who smoke cigarettes can be modeled by the equation p = 43.3 - 0.504t where t is the number of years past 1960.

- (a). What percent does this model predict for 2013? [Hint: What value of t represents 2013?]
- (b). In which year does the model predict that the percentage of adults who smoke cigarettes will be less than 10%.

10. Graph the solution region for each of the following.

(a). 3(x+y) < 6x - 9 (b). $\begin{cases} x + 2y < 10 \\ 3x + 4y \le 24 \\ 3x + 2y \le 21 \\ x \ge 0 \\ y \ge 0 \end{cases}$

11. Graph the solution region for the given system of inequalities. Find the corners.

12. Given the system of inequalities
$$\begin{cases} x+4y \geq 10\\ 2x+6y \geq 18\\ x \geq 0\\ y \geq 0 \end{cases}$$

(a).	Shade the feasible region	(b).	Find the corners	(0,3),(10,0),(6,1)
(c).	Minimize $f = 3x + 2y$ subject to the sam	e constrai	ints	Minimum of 6 at $(0,3)$.

13. Solve the following inequality. Graph the solution on the number line.

(a).
$$x^2 - x - 6 \le 0$$
 [-2,3] (b). $\frac{(x-3)^2}{(x+1)(x+2)} \ge 0$ (- ∞ , -2) \cup (-1, ∞)

16.59%