1. Perform the indicated operations and simplify.

(a).
$$\frac{3x+9}{x^2-9} \cdot \frac{x^2-6x+9}{9}$$

(b). $\frac{x^2-4x+3}{1-x^2} \div (x^2+x-12)$
(c). $\frac{1-2a}{4a} - \frac{a+1}{4a}$
(d). $\frac{4}{3} + \frac{2x+1}{4}$
(e). $\frac{x}{x+2} - \frac{x+2}{x^2-4} + 3$
(f). $\frac{3a^2bc^4}{8a^3b^2c^5} \div \frac{2abc}{a^2b^3c^2}$

2. Simplify the complex fractions

(a).
$$\frac{\frac{3}{2y} + 2}{\frac{2}{3y} + \frac{1}{5y^2}}$$
 (b). $\frac{\frac{2}{x+1} - \frac{1}{x-1}}{x+1 + \frac{2}{x-1}}$ (c). $\frac{\frac{x}{\sqrt{y}} + \sqrt{y}}{x+y}$

3. Rewrite the following so that only positive exponents remain and simplify [No calculator]. $(4^{-1} - 2^{-3})^{-1}$

4. Solve the following equations for x.

(a). 2(x+3) + 4x = 3(x-1)(b). 3(x-2) = 6x - 6(c). $\frac{3x}{4} + 2 = \frac{2x-1}{5}$ (d). $\frac{2}{3} - \frac{1}{x} = \frac{6}{5x}$ (e). $\frac{4x}{x-1} + \frac{2}{3} = \frac{4}{x-1}$

5. Solve for y in terms of x: $2x + \frac{3}{2}y = 8$

6. A company manufactures and sells highlighter markers. The total cost and revenue (in dollars) for x packages of markers is given below. How many packages of markers must they sell to break even?

Total Cost = 3x + 586 and Total Revenue = 15x.

7. In seawater, the pressure p is related to the depth d according to 33p - 18d = 495 where p is in pounds per square inch and d is in feet. The Titanic was discovered at a depth of 12,460 ft. Find the pressure at this depth. 8. If f(x) = 3x - 4, find the following

(a).
$$f(3)$$
 (b). $f\left(\frac{1}{4}\right)$ (c). $f(2.3)$ (d). $f(x+h) - f(x)$

9. If $f(x) = -2x^2 + 5$, find the following

(a).
$$f(0)$$
 (b). $f(-2)$ (c). $f(x-1)$ (d). $f(x) - f(1)$

10. (a). Does the graph below represent y as a function of x? Explain. (b). If $y = 4x^3$, is y a function of x?

11. Find the domain and range for

- (a). $f(x) = \sqrt{x+9}$ (b). $y = x^2 + 3$ (c). $f(x) = \frac{x}{3x+5}$ [Domain only]
- **12.** Given $f(x) = \sqrt{x}$ and $g(x) = \frac{2}{\sqrt{x}}$, find and simplify (a). (f+g)(x)(b). $\left(\frac{f}{g}\right)(x)$ (c). $f^2(x) = (f \cdot f)(x)$
- **13.** Given $f(x) = \frac{1}{2x}$ and g(x) = 1 3x, find and simplify **(a)**. $(f \cdot g)(x)$ **(b)**. $(f \circ g)(x)$ **(c)**. $(g \circ g)(x)$

14. The phone company charges \$72 for the service call, plus \$48 per hour. Let x be the number of hours they work.

- (a). Write an expression for the dollars you pay for x hours.
- (b). How much is the bill, if they work half an hour?
- (c). How long did they work if the bill was \$154.80 ?

15. For each of the following lines, find the x-and y-intercept and graph the line.

(a).
$$6x - 3y = -24$$

16. For the given graph, the slope of the line is (circle one)

positive negative 0 undefined

- **17.** Find the equation of each line given the following information.
- (a). line passes through the points (-3, 4) (9, 8)
- (b). line with a y-intercept of 5 and perpendicular to 3x + 5y = 4

[No Calculator]

18. A car starts with a full tank of gas. After driving 20 miles there are 11 gallons of gas left. After driving 100 miles there are still 7 gallons left.

(a). Write a linear equation for the number of gallons of gas left as a function of the number of miles driven.

- (b). If you have 3 gallons left, how far have you driven?
- (c). How many gallons of gas does the tank hold when it is full?

USE THE HOMEWORK FOR MORE WORD PROBLEM PRACTICE.

5. $y = \frac{16}{3} - \frac{4}{3}x$

6. $x = \frac{586}{12} \approx 48.833 \Longrightarrow 49$ packages.

7. p = 6811.3636 pounds per square inch.

Exam 2 Review: Sec	ctions 0.7, 1.1-1.3	Page 4	
8. (a). $f(3) = 5$	(b) . $f\left(\frac{1}{4}\right) = \frac{-13}{4}$	(c). $f(2.3) = 2.9$	(d). $f(x+h) - f(x) = 3h$
9. (a). $f(0) = 5$	(b). $f(-2) = -3$	(c). $f(x-1) = -2x^2 + 4x + $	3 (d). $f(x) - f(1) = -2x^2 + 2$
10.(a). No, it is not a function	on because it fails the Vertical	Line Test (b). Yes, for each x there is only one y -value.
11. (a). domain: $x \ge -9$; range	e: $y \ge 0$ (b). domain:	All real; range: $y \ge 3$	(c). domain: All real except $x \neq -\frac{5}{3}$
12. (a). $\frac{x+2}{\sqrt{x}}$	(b). $\frac{x}{2}$		(c). <i>x</i>
13. (a). $\frac{1-3x}{2x}$	(b). $\frac{1}{2-6x}$		(c). $-2 + 9x$
 14. (a). 72 + 48x (b). \$96 (c). x = 1.725 hours 			
15. (a). x -int : $(-4, 0)$ y -int	t(0,8)		(b). x -int : $(4/3, 0)$ y -int $(0, -4)$
16. undefined			
17. (a). $y = \frac{1}{3}x + 5$	(b	b). $y = \frac{5}{3}x + 5$	

```
18.
```

(a). $x =$ miles driven and $y =$ gallons left	\Rightarrow	$y = -\frac{1}{20}x + 12$
		20

(b). 180 miles

(c). 12