Name:
Math 111 Mathematical Methods - Crawford
Exam 2 - Form B
30 October 2015

Score

1	$/ 4$
2	$/ 16$
3	$/ 24$
4	$/ 6$
5	$/ 12$
6	$/ 8$
7	$/ 12$
8	$/ 100$
9	
Total	$/ 8$

1. (4 pts). Find the domain of $f(x)=\frac{3 x-5}{2}$
2. (16 pts). Given $f(x)=x-2 x^{2}$ and $g(x)=3 x-1$, find and simplify the following.
(a). $f(-2)$
(b). $f(x+3)$
(c). $(g \circ f)(x)$
3. (24 pts). Perform the indicated operations and simplify.
(a). $\frac{1}{x^{2}-x-20} \div \frac{x^{2}+4 x-5}{x^{2}-25}$
(b). $\frac{3 x}{5}-\frac{x-2}{3}$
(c). $\frac{3}{x}-\frac{x}{x^{2}-x}+\frac{1}{x-1}$
4. $(6 \mathrm{pts})$. Simplify the complex fraction $\frac{b-\frac{2}{a}}{\frac{1}{2 a}+3}$
5. (12 pts). Solve the following equations for x.
(a). $-3(2+4 x)=3 x-5$
(b). $\frac{3}{x}=\frac{2}{x-4}$
6. (12 pts). Given $-2 x+4 y=6$,
(a). Find the x - and y - intercepts.
(b). Find the slope.
(c). Graph the line and clearly label the intercepts.
7. $(8 \mathrm{pts})$. Given the points $(-1,3)$ and $(3,-4)$.
(a). Find an equation of the line through the two points. [You do not need to simplify.]
(b). What is the slope of a line perpendicular to the line found in part (a).
8. (8 pts). The cost of building a new house depends on the number of square feet of floor space. Suppose that the builder will charge $\$ 80$ per square foot, and that the lot on which the house is to be built costs $\$ 50,000$.
(a). Write a linear equation for the total cost as a function of square feet of floor space.
(b). The new owners can afford to pay as much as $\$ 280,000$, total, for the house and the lot. What is the largest house they could build?
9. (12 pts). A small business tracks its profits and observes that if 100 units are sold, they make $\$ 2200$ in profit. If 250 units are sold, they make $\$ 8500$ in profit.
(a). Write a linear equation for the profit as a function of the number of units sold.
(b). How much profit does the company make if 500 units are sold?
(c). Write a sentence that interprets the meaning of the y-intercept.
