Math 111, Intro to Math Methods and Applications - Crawford

	Score	
	1	/6
	2	/20
• Books or notes (in any form) are not allowed.	3	/6
• Calculators are not allowed on Part I. You may use a calculator on		, , ,
Part II.	4	/20
• Show all your work – partial credit may be given for written work.		
• Clearly indicate your answers.	5	/5
• Good Luck!	6	/10
	7	/15
	8	/20
	Total	/100

<u>Part I</u>

 $\label{eq:calculators} \begin{array}{c} \mbox{Calculators are } \underline{\textit{not}} \mbox{ allowed on Part I.} \end{array}$ You must completely finish Part I and turn it in before you work on Part II.

1. (6 pts). Sketch the following interval on the number line <u>and</u> write the answer in interval notation.

 $[-4,5) \cap (-5,0)$

(a).
$$\frac{2 \cdot 4 - 6}{2 - 2(2 - 5)^2}$$
 (b). $-\frac{8}{5} \div 4$

(c).
$$\frac{3}{4} + \frac{1}{2} - \frac{3}{10}$$
 (d). $\frac{6^3}{-6^2 \cdot 6^{-5}}$

3. (6 pts). Evaluate the following powers and roots. If it is not a real number, clearly state so.

(a). $16^{-1/2}$

(b). 4^{3/2}

[End of Part I]

4. (20 pts). Simplify the following. Use only positive exponents (i.e. no radicals, no negative exponents).

(a). $\frac{x^{-3}}{x^3}$

(b).
$$\left(\frac{ab^{-2}}{3^{-2}a^3b^4}\right)^{-3}$$

(c). $a^{2/3} \cdot a^3$

(d). $\left(u^{1/2}v^{3/4}\right)^8$

5. (5 pts). Simplify the following expression by removing perfect powers from the radicand. Leave the radical sign in your answer. [Assume nonnegative variables.]

 $\frac{\sqrt[3]{32x^6}}{\sqrt[3]{27y^4}}$

6. (10 pts).

(a). Rewrite the following in exponential form and simplify. [No radicals and positive exponents only] $3y^2\sqrt{y^3}$

(b). Write the following in radical form. $-4x^{3/4}$

7. (15 pts). Perform the indicated operations and simplify.

(a).
$$(3x^2 - 2y)(x^2 + 2y)$$

(b). $(x-4)(x^2+3x-6)$

(c). $(z+3)^3$

8. (20 pts). Factor *completely*.

(a). $x^2 - 2x - 15$

(b). $6x^3 + 33x^2 + 36x$

(c). $16a^4 - b^2$

(d). $2x^3 - x^2y + 6x - 3y$