1. (b). $\$ 865$
2. (b). $\$ 17,100$
3. (b). $\$ 87,000$
(c). 7.08 years
4. (b). 118.045°
(c). 12.31%
5. (b). $\$ 287.50$
(c). $\$ 115$
6. (b). $\$ 145$
(c). $6.67 \approx 7$ loan periods

Remember to clearly indicate what the variables (x and y) represent.

1. In an issue of Business Week, the president of a chain of franchised automobile tune-up shops said that people who buy a franchise and open a shop pay a weekly fee of $\$ 235$ plus 7% of the total amount of money taken in during the week by the tune-up center.
(a). Write a linear equation for the total fee as a function of the amount taken in by the shop.
(b). How much does the franchise owe if $\$ 9000$ is taken in during the week?
2. A company can make a total of 20 solar heaters for $\$ 13,900$, while 10 heaters cost $\$ 7500$.
(a). Write a linear equation for the total cost as a function of the number of heaters produced.
(b). What is the cost if 25 heaters are produced?
3. The sales of a small company were $\$ 27,000$ in its first year and $\$ 63,000$ in its fourth year.
(a). Write a linear equation for the sales as a function of the year.
(b). What will the sales be in the sixth year?
(c). How long before they reach $\$ 100,000$ in sales?
4. Due to humidity, the perceived temperature outside is different that the actual temperature. On a day when the actual temperature is 100°, if there is no humidity (0%), then the perceived temperature is 91.2°. If there is 40% relative humidity, then the perceived temperature is 107.72°
(a). For a day with actual temperature of 100°, write a linear equation for the perceived temperature as a function of the relative humidity.
(b). What is the perceived temperature with 65% relative humidity?
(c). At what relative humidity will the perceived temperature be 100° ? [i.e. For what relative humidity will the perceived temperature be the same as the actual temperature of 100° ?]
5. At the Rob-m-Blind Payday Advance, the lenders make loans for two-week periods and charge a fee that is 15% of the loan amount. The borrower leaves a postdated check that includes the loan amount and the fee. The lender gives the borrower cash for the loan amount and, after two weeks, deposits the check.
(a). Write a linear equation for the check amount as a function of the loan amount.
(b). If you borrow $\$ 250$ for a two-week period, how much will you write the check for?
(c). If you borrow $\$ 100$ for a two-week period, how much will you write the check for?
6. Suppose you borrow $\$ 100$ and the fee charged is $\$ 15$ for the two-week loan period. If you cannot pay back the loan after the two weeks, you can extend your loan by paying the $\$ 15$ fee again for another two-week period.
(a). Write a linear equation for the total amount (loan and fees) as a function of the number of loan periods.
(b). How much is the total amount if you extend the initial loan two more times?
(c). After how many loan periods will the fees charged be as much as the loan itself?

Homework: Section 1.3, p. 85 \#47-65(odd)

