Name: _

Math 111, Intro to Math Methods and Applications - Crawford

	Score		
	1	/6	
• Books or notes (in any form) are not allowed.	2	/10	
• Calculators are not allowed on Part A.	2	/ 10	
• You may use a calculator on Part B.	3	/12	
• Clearly indicate your answers.	4	/10	
• Show all your work – partial credit may be given for written work.		/10	
• Good Luck!	5	/10	
-	6	/10	
	7	/18	
	8	/16	
<u>Part A</u> Calculators are <u>not</u> allowed on Part A.	9	/12	
You must completely finish Part A and turn it in before you work on Part B.		/100	

1. (6 pts). Given 2x - 3y = 8

(a). Find the x- and y-intercepts.

(b). Graph the line and clearly indicate the intercepts. [Draw nicely – label marks on the axes.]

- **2.** (10 pts). Given the quadratic function $y = x^2 4$,
- (a). Find the (x, y) coordinate of the vertex; Is it a maximum or a minimum?

(b). Find the x- and y- intercepts, if they exist. [If they do not exist, clearly state so.]

(c). Graph the function. Label the vertex and intercepts.

<u>Part B</u> You must completely finish Part A and turn it in before you may use a calculator on Part B. Show all of your work and clearly indicate your answers.

3. (12 pts). Find the equation of each of the lines given the following information. [Write your answers in the form y = mx + b.]

(a). Line through the points (2, -4) and (3, 4).

(b). Line parallel to y = -3x + 4 with y-intercept -2.

4. (10 pts). A small company makes a profit of \$14,000 in its 1^{st} year of operation and makes a profit of \$65,000 in its 4^{th} year of operation.

(a). Write a linear equation for the profit as a function of the year.

(b). What will be the profit in the 5^{th} year?

(c). When will the profit reach \$100,000?

5. (10 pts). Solve the following system of linear equations algebraically. Show all your work. [If the system is dependent or has no solution, clearly state so.]

ſ	2x	—	y	=	3
J	-3x	+	4y	=	13

6. (10 pts). A woman borrows money from her bank and an investor to start a business. The interest on the bank loan was 10% and the interest on the investor loan was 12%. The total amount borrowed was \$100,000 and her total yearly interest payment was \$10,900. Find the amount she borrowed from the bank and the investor. [Clearly indicate what x and y represent. Write your final answer using the words of the problem.]

7. (18 pts). Solve the following equations using the method indicated. Simplify your answers and leave them in \underline{exact} form. If no solution exists, clearly state so.

(a). By factoring: $x^2 - 11x = -10$

(b). By using the quadratic formula: $2x^2 - 8x - 3 = 0$

(c). By any method you choose: $3x^2 + 5x - 2 = 0$

8. (16 pts). (a). Solve the following inequality and graph the solution on the number on the number line. $\frac{-2x}{5} < -3 - x$

(b). Graph the solution region of the following inequality. $3x - y \le -2$

9. (12 pts). The graph of the boundary equations for the following system of inequalities is shown below.

 $\begin{cases} x + 5y \leq 10\\ 2x + y \leq 4\\ x \geq 0\\ y \geq 0 \end{cases}$

(a). Label each line with the correct line from the system of equations.

(b). Shade the solution region.

(c). Find all of the corners of the solution region.

